Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang

Nội dung Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang Bản PDF - Nội dung bài viết Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang Được biên soạn bởi thầy giáo Phạm Đình Quang, tài liệu này gồm 82 trang, tập hợp các chuyên đề Toán lớp 8 (tập hai) nhằm hỗ trợ học sinh lớp 8 trong quá trình học tập chương trình Toán giai đoạn học kỳ 2. Mục lục: Phần I: Đại số Chương 1: Phương trình bậc nhất một ẩn Bài 1: Mở đầu về phương trình. Phương trình bậc nhất một ẩn - Tóm tắt lý thuyết - Bài tập Bài 2: Phương trình được đưa về dạng Ax + B = 0 - Tóm tắt lý thuyết - Bài tập Bài 3: Phương trình tích - Tóm tắt lý thuyết - Ví dụ - Bài tập Bài 4: Phương trình chứa ẩn ở mẫu. Bài tập tổng hợp - Tóm tắt lý thuyết - Ví dụ - Bài tập Bài 5: Giải bài toán bằng cách lập phương trình - Tóm tắt lý thuyết - Ví dụ - Bài tập Bài 6: Sử dụng máy tính bỏ túi để xác định nghiệm của một phương trình - Tóm tắt lý thuyết - Tìm một hoặc nhiều nghiệm của phương trình Bài 7: Ôn tập chương Chương 2: Bất phương trình bậc nhất một ẩn Bài 1: Liên hệ giữa thứ tự và phép cộng, thứ tự và phép nhân - Tóm tắt lý thuyết - Bài tập Bài 2: Bất phương trình bậc nhất một ẩn - Tóm tắt lý thuyết - Bài tập Bài 3: Phương trình chứa dấu giá trị tuyệt đối - Tóm tắt lý thuyết - Bài tập Bài 4: Ôn tập chương Phần II: Hình học Chương 3: Định lí Thales trong tam giác. Tam giác đồng dạng Bài 1: Định lí Thales trong tam giác. Định lí đảo, hệ quả của định lí Thales - Tóm tắt lý thuyết - Bài tập Bài 2: Tam giác đồng dạng. Các trường hợp đồng dạng của 2 tam giác - Tóm tắt lý thuyết - Bài tập Bài 3: Các trường hợp đồng dạng của hai tam giác vuông - Tóm tắt lý thuyết - Bài tập Bài 4: Ôn tập chương Chương 4: Hình lăng trụ đứng, hình chóp đều Bài 1: Hình hộp chữ nhật - Tóm tắt lý thuyết - Bài tập Bài 2: Hình lăng trụ đứng - Tóm tắt lý thuyết - Bài tập Bài 3: Hình chóp đều và hình chóp cụt đều - Tóm tắt lý thuyết - Bài tập Bài 4: Ôn tập chương Bài 5: Một số bài toán thực tế Chương 5: Các đề thi

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phép nhân và phép chia các đa thức
Nội dung Chuyên đề phép nhân và phép chia các đa thức Bản PDF - Nội dung bài viết Chuyên đề phép nhân và phép chia các đa thức Chuyên đề phép nhân và phép chia các đa thức Để giúp học sinh bồi dưỡng năng lực học tập môn Toán lớp 8 chương 1, Sytu giới thiệu tài liệu chuyên đề phép nhân và phép chia các đa thức. Tài liệu này bao gồm các kiến thức cơ bản, hướng dẫn mẫu và bài tập tự luận. Trước hết, chúng ta cần hiểu cách nhân đơn thức với đa thức. Khi nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích lại với nhau. Cách nhân đa thức với đa thức cũng tương tự, ta nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia và cộng các tích lại với nhau. Ngoài ra, tài liệu cũng giới thiệu những hằng đẳng thức đáng nhớ như bình phương của một tổng, bình phương của một hiệu, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương, hiệu hai lập phương. Các hằng đẳng thức này giúp chúng ta giải quyết các bài toán phức tạp một cách dễ dàng hơn. Phần cuối của tài liệu đề cập đến cách phân tích đa thức thành nhân tử. Các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử giúp chúng ta phân tích đa thức một cách hiệu quả. Ngoài ra, khi cần, ta có thể phối hợp nhiều phương pháp để giải quyết bài toán phân tích đa thức thành nhân tử. Trên hết, tài liệu cũng giới thiệu cách chia đơn thức cho đơn thức và chia đa thức cho đơn thức. Việc này yêu cầu chúng ta tỉ mỉ trong việc chia các hạng tử để đạt được kết quả chính xác. Với tài liệu này, học sinh sẽ có cơ hội học tập và ôn tập kỹ năng phép nhân và phép chia các đa thức một cách hiệu quả, từ đó nâng cao khả năng giải các bài toán liên quan trong chương trình Toán lớp 8.
Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ
Nội dung Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ Bản PDF - Nội dung bài viết Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn ThọPHẦN A: ĐẠI SỐ 8PHẦN B: HÌNH HỌC 8 Các dạng toán và phương pháp giải lớp 8 môn Toán – Ngô Văn Thọ Tài liệu "Các dạng toán và phương pháp giải lớp 8 môn Toán" được biên soạn bởi thầy Ngô Văn Thọ, gồm 202 trang phân dạng và hướng dẫn phương pháp giải Toán lớp 8 toàn tập, bao gồm cả Đại số và Hình học. Mỗi chuyên đề trong tài liệu đều được phân dạng chi tiết, cung cấp các bước giải toán, ví dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. PHẦN A: ĐẠI SỐ 8 Chương I: Phép nhân và phép chia các đa thức bao gồm các phần như nhân đơn thức với đa thức, hằng đẳng thức, phân tích đa thức thành nhân tử và phương pháp giải đa thức. Các phương pháp giải bao gồm cách đặt nhân tử chung, nhóm nhiều hạng tử, dùng hằng đẳng thức, chia đa thức và nhiều phương pháp khác. Chương II: Phân thức đại số bao gồm tính chất cơ bản của phân thức đại số, phân thức bằng nhau, rút gọn phân thức và các phép toán về phân thức. Phương pháp giải toán với phân thức đại số như tìm điều kiện để phân thức có nghĩa, tìm giá trị của biến để phân thức nhận một giá trị nào đó. Chương III: Phương trình bậc nhất một ẩn bao gồm mở đầu về phương trình, phương trình bậc nhất một ẩn và giải toán bằng cách lập phương trình. Các vấn đề như loại so sánh, loại tìm số gồm hai, ba chữ số và các loại khác. Chương IV: Bất phương trình bậc nhất một ẩn bao gồm bất đẳng thức, bất phương trình bậc nhất một ẩn và phương trình chứa dấu giá trị tuyệt đối. PHẦN B: HÌNH HỌC 8 Chương I: Tứ giác bao gồm tứ giác, hình thang – hình thang vuông, hình thang cân, đường trung bình của tam giác và của hình thang, đối xứng trục, hình bình hành, hình chữ nhật, hình thoi và hình vuông. Chương II: Đa giác Chương III: Tam giác đồng dạng bao gồm định lí Ta-lét trong tam giác, tam giác đồng dạng và cách vận dụng để tính toán, chứng minh và giải các bài toán liên quan. Đây là tài liệu cung cấp kiến thức căn bản và phương pháp giải toán đầy đủ và chi tiết, giúp học sinh lớp 8 hiểu rõ và áp dụng vào thực hành môn Toán một cách hiệu quả.