Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Thái Bình

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Thái Bình. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Thái Bình, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Thái Bình : + Một mảnh vườn hình chữ nhật có diện tích 150 m2. Biết rằng, chiều dài mảnh vườn hơn chiều rộng mảnh vườn là 5 m. Tính chiều rộng mảnh vườn. + Giải hệ phương trình: 4x + y = 3 và 2x – y = 1 (không sử dụng máy tính cầm tay). + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a. Chứng minh tứ giác BEGH là tứ giác nội tiếp. b. Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c. Đoạn thẳng AK cắt đường tròn O tại F khác A. Chứng minh G là tâm đường tròn nội tiếp tam giác HEF. d. Gọi M, N lần lượt là hình chiếu vuông góc của A và B lên đường thẳng EF. Chứng minh HE + HF = MN.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bình Dương
Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương : + Cho hệ phương trình: 3 2 10 2 x y x y m (m là tham số). 1) Giải hệ phương trình đã cho khi m = 9. 2) Tìm tất cả các giá trị của tham số m để hệ phương trình đã cho có nghiệm x y thỏa x y 0 0. + Cho Parabol 2 P y x và đường thẳng 5 6 d y x. 1) Vẽ đồ thị P. 2) Tìm tọa độ các giao điểm của P và d bằng phép tính. 3) Viết phương trình đường thẳng d biết d song song d và d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 2 x x sao cho 1 2 x x 24. + Một khu vườn hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Người ta làm một lối đi xung quanh vườn (thuộc đất trong vườn) rộng 1,5m. Tính kích thước của vườn, biết rằng đất còn lại trong vườn đề trồng trọt là 2 4329 m.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 trường THPT chuyên Hà Tĩnh : + Cho x, y là các số thực dương thỏa mãn x + y + xy = 3. Tìm giá trị lớn nhất của biểu thức: P. + Cho nửa đường tròn tâm O đường kính AB. Gọi I là điểm chính giữa của cung AB. Trên cung lớn AB của đường tròn tâm I, bán kính IA, lấy điểm C sao cho tam giác ABC nhọn. Gọi M, N lần lượt là giao điểm của CA, CB với nửa đường tròn đường kính AB (M khác A, N khác B); J là giao điểm của AN với BM. a) Chứng minh MBC và NAC là các tam giác cân. b) Chứng minh I là trực tâm của tam giác CMN. c) Gọi K là trung điểm của IJ, tính tỉ số CJ/OK. + Cho tập hợp X = {1;2;3;4;5;6;7;8;9}, chia tập hợp X thành hai tập hợp khác rỗng và không có phần tử chung. Chứng minh rằng với mọi cách chia thì luôn tồn tại 3 số a, b, c trong một tập hợp thỏa mãn: a + c = 2b.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hà Tĩnh
Chiều thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hà Tĩnh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT tỉnh Quảng Ninh
Sáng thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 hệ THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT tỉnh Quảng Ninh (dành cho mọi thí sinh) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT tỉnh Quảng Ninh : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Lớp 9B có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn đang cách ly vì dịch bệnh Covid-19. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9B có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O) (A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt đường tròn (O) tại C (C khác A). Đường thẳng MC cắt đường tròn (O) tại điểm B (B khác C). Gọi H là hình chiếu của O trên BC. a. Chứng minh tứ giác MAHO nội tiếp. b. Chứng minh AB/AC = MA/MC. c. Chứng minh BAH = 90°. d. Vẽ đường kính AD của đường tròn (O). Chứng minh hai tam giác ACH và DMO đồng dạng. + Cho các số thực không âm a và b. Tìm giá trị nhỏ nhất của biểu thức P.