Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4, nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4 có mã đề 132, đề gồm 7 trang với 50 câu hỏi và bài toán dạng trắc nghiệm 4 đáp án lựa chọn, học sinh làm bài thi trong 90 phút, thông qua kỳ thi, các em sẽ nắm rõ được năng lực bản thân, cũng như biết được cấu trúc và độ khó của đề thi, đề thi có đáp án. Trích dẫn đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4 : + Có hai tờ giấy A4, trên mỗi tờ vẽ sẵn một lục giác đều có kích thước bằng nhau. Hai bạn Lào và Cai, mỗi người trang trí một lục giác bằng cách tô ngẫu nhiên mỗi đỉnh của đa giác bởi đúng một trong 2 màu: Xanh, Đỏ. Hai cách trang trí của 2 bạn được gọi là “đồng nhất” nếu ta có thể xoay một tờ giấy và đặt lên trên tờ giấy còn lại thì được hai cách tô trùng khớp là một. Tính xác suất để cách trang trí của Lào và Cai là “đồng nhất”. [ads] + Câu lạc bộ bóng đá AS Roma dự định xâu dựng SVĐ mới có tên là Stadio della Roma để làm sân nhà của đội bóng thay thế cho đội bóng Olimpico. Hệ thống mái của SVĐ dự định được xây dựng có dạng hai hình elip như hình bên với hình elip lớn bên ngoài có độ dài trục lớn là 146 mét, độ dài trục nhỏ là 108 mét, hình elip nhỏ bên trong có độ dài trục lớn là 110 mét, độ dài trục nhỏ là 72 mét. Giả sử chi phí vật liệu là 100$ mỗi mét vuông. Tính chi phí cần thiết để xây dựng hệ thống mái sân. + Trong năm đầu tiên đi làm, anh A được nhận lương là 10 triệu đồng mỗi tháng. Là một người có năng lực tốt và có các sáng kiến trong công việc giúp tăng năng suất lao động nên cứ hết một năm anh A lại được tăng lương, mỗi tháng năm sau tăng 12% so với mỗi tháng năm trước. Mỗi khi lĩnh lương anh A đều cất đi phần lương tăng so với năm ngay trước để tiết kiệm mua ô tô. Hỏi sau ít nhất bao nhiêu năm thì anh A mua được ô tô giá 800 triệu biết rằng anh A được gia đình hỗ trợ 35% giá trị chiếc xe?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2023 lần 2 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi (mã đề 101). Trích dẫn Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho hai điểm A 0 2 1 B 1 2 3 và mặt phẳng P x y 2 1 0. Đường thẳng d đi qua điểm A, song song với mặt phẳng P sao cho khoảng cách từ B đến d nhỏ nhất có một vectơ chỉ phương là u a b 1. Khi đó a b 2 bằng? + Trong không gian Oxyz cho hai mặt phẳng P x y z Q x y z 2 2 1 0 và các điểm A B 1 1 2 3. Gọi S là mặt cầu bất kỳ qua A và tiếp xúc với cả hai mặt phẳng P Q. Gọi I là tâm của mặt cầu S. Giá trị lớn nhất của độ dài đoạn thẳng BI thuộc khoảng nào dưới đây? + Gọi M N lần lượt là điểm biểu diễn của số phức z có phần thực không âm và số phức w thỏa mãn 2 2 4 z w w i 4 2. Giá trị nhỏ nhất của khoảng cách MN bằng a b với a a b b tối giản. Khi đó a b 2 bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124; kỳ thi được diễn ra vào thứ Ba ngày 23 tháng 05 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Bắc Giang : + Trong một hòm phiếu có 10 lá phiếu ghi các số tự nhiên từ 1 đến 10 (mỗi lá ghi một số, không có hai lá phiếu nào được ghi cùng một số). Rút ngẫu nhiên cùng lúc hai lá phiếu. Tính xác suất để hiệu hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 5. + Cho hàm số f x có đạo hàm liên tục trên và thỏa mãn các điều kiện f (0 0) 2 3 x f x xf x x 1 x. Khi đó diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y fx trục hoành và đường thẳng x = 3 xấp xỉ giá trị nào nhất trong các giá trị sau đây? + Cho hình nón có đỉnh S bán kính đáy bằng a 3. Một mặt phẳng đi qua đỉnh của hình nón, cắt hình nón theo một thiết diện là tam giác vuông cân SAB. Biết khoảng cách giữa AB và trục của hình nón bằng a. Tính thể tích của khối nón giới hạn bởi hình nón đã cho theo a.
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần thứ hai sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề MĐ 101, MĐ 102, MĐ 103, MĐ 104, MĐ 105, MĐ 106, MĐ 107, MĐ 108; kỳ thi được diễn ra vào thứ Hai ngày 22 tháng 05 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Sơn La : + Cho khối lăng trụ tam giác đều ABC A B C có AB = 4 và AB BC. Biết rằng thể tích của khối lăng trụ đã cho bằng m n trong đó mn là các số nguyên dương và m n là phân số tối giản. Khi đó tổng m n bằng? + Cho hàm số f x có đạo hàm liên tục trên khoảng và thỏa mãn 3 2 2 3 x x f x. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y f x trục hoành và hai đường thẳng x x 0 1 có giá trị thuộc khoảng nào dưới đây? + Cho ab là các số thực thay đổi thỏa mãn 1 2 a b. Biết giá trị nhỏ nhất của biểu thức 2 2 2log 4 4 9 log a b a P b b a là 3 9 m n (với m n là các số nguyên dương). Khi đó giá trị của biểu thức F m n 2 3 1 bằng?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2023; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Cà Mau : + Trên tập số phức, xét phương trình z2 – 2z + 1 – m = 0 (m là tham số thực). Gọi S là tập hợp các giá trị của tham số m để phương trình đã cho có nghiệm thỏa mãn |z| = 3. Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x + 3)2 + (y − 2)2 + (z − 2)2 = 27. Gọi mặt phẳng (P): x + by + 2z + c = 0 đi qua hai điểm A(0;0;−2), B(–4;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Khi đó a2 + b2 + c2 bằng? + Cho f(x) là đa thức bậc 5 có đồ thị hàm số f'(x) như hình vẽ bên dưới. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f(x) – x + a trên đoạn [-3/2;1]. Có bao nhiêu giá trị nguyên của a thuộc [-2023;2023] để 9m2 – 320M > 0?