Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4, nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4 có mã đề 132, đề gồm 7 trang với 50 câu hỏi và bài toán dạng trắc nghiệm 4 đáp án lựa chọn, học sinh làm bài thi trong 90 phút, thông qua kỳ thi, các em sẽ nắm rõ được năng lực bản thân, cũng như biết được cấu trúc và độ khó của đề thi, đề thi có đáp án. Trích dẫn đề thi thử THPTQG 2019 môn Toán trường THPT chuyên Lào Cai lần 4 : + Có hai tờ giấy A4, trên mỗi tờ vẽ sẵn một lục giác đều có kích thước bằng nhau. Hai bạn Lào và Cai, mỗi người trang trí một lục giác bằng cách tô ngẫu nhiên mỗi đỉnh của đa giác bởi đúng một trong 2 màu: Xanh, Đỏ. Hai cách trang trí của 2 bạn được gọi là “đồng nhất” nếu ta có thể xoay một tờ giấy và đặt lên trên tờ giấy còn lại thì được hai cách tô trùng khớp là một. Tính xác suất để cách trang trí của Lào và Cai là “đồng nhất”. [ads] + Câu lạc bộ bóng đá AS Roma dự định xâu dựng SVĐ mới có tên là Stadio della Roma để làm sân nhà của đội bóng thay thế cho đội bóng Olimpico. Hệ thống mái của SVĐ dự định được xây dựng có dạng hai hình elip như hình bên với hình elip lớn bên ngoài có độ dài trục lớn là 146 mét, độ dài trục nhỏ là 108 mét, hình elip nhỏ bên trong có độ dài trục lớn là 110 mét, độ dài trục nhỏ là 72 mét. Giả sử chi phí vật liệu là 100$ mỗi mét vuông. Tính chi phí cần thiết để xây dựng hệ thống mái sân. + Trong năm đầu tiên đi làm, anh A được nhận lương là 10 triệu đồng mỗi tháng. Là một người có năng lực tốt và có các sáng kiến trong công việc giúp tăng năng suất lao động nên cứ hết một năm anh A lại được tăng lương, mỗi tháng năm sau tăng 12% so với mỗi tháng năm trước. Mỗi khi lĩnh lương anh A đều cất đi phần lương tăng so với năm ngay trước để tiết kiệm mua ô tô. Hỏi sau ít nhất bao nhiêu năm thì anh A mua được ô tô giá 800 triệu biết rằng anh A được gia đình hỗ trợ 35% giá trị chiếc xe?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa - Nghệ An
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT Đặng Thúc Hứa, huyện Thanh Chương, tỉnh Nghệ An tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa – Nghệ An mã đề 147 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút.
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên - Hà Nội
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004; kỳ thi được diễn ra vào Chủ Nhật ngày 28 tháng 03 năm 2021. Trích dẫn đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội : + Một bạn sinh viên muốn có một khoản tiền để mua xe máy làm phương tiện đi làm sau khi ra trường. Bạn lên kế hoạch làm thêm và gửi tiết kiệm trong 2 năm cuối đại học. Vào mỗi đầu tháng bạn đều đặn gửi vào ngân hàng một khoản tiền T (đồng) theo hình thức lãi kép với lãi suất 0,56% mỗi tháng. Biết đến cuối tháng thứ 24 thì bạn đó có số tiền là 30 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau? + Cho hai đường thẳng x’x, y’y chéo nhau và vuông góc với nhau. Trên x’x lấy cố định điểm A, trên y’y lấy cố định điểm B sao cho AB cùng vuông góc với Ax, By và AB = 2020cm. Gọi C, D là hai điểm lần lượt di chuyển trên hai tia Ax, By sao cho AC + BD = CD. Hỏi bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD có giá trị nhỏ nhất thuộc khoảng nào sau đây? + Cho đường thẳng y = 2x và Parabol y = x2 + c (c là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì c gần với số nào nhất sau đây?
Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 03 năm 2021, trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội tổ chức kiểm tra khảo sát thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội : + Một khu rừng có trữ lượng gỗ là 7.106 mét khối. Biết tốc độ sinh trưởng của các cây trong khu rừng đó là 4% mỗi năm. Nếu hàng năm không khai thác thì sau 6 năm khu rừng đó có bao nhiêu mét khối gỗ? + Trong không gian tọa độ Oxyz cho ba điểm A(1; 0; 2), B(2; 3; −1), C(0; 3; 2) và mặt phẳng (P) : x − 2y + 2z − 7 = 0. Khi điểm M thay đổi trên mặt phẳng (P), hãy tìm giá trị nhỏ nhất của biểu thức E = |MA + MB + MC|. + Trong mặt phẳng tọa độ Oxy cho hàm số y = (2x + 2)/(x − 1) có đồ thị (C) và đường thẳng d : y = −x + m (m là tham số). Tìm m để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt.
Đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long - Quảng Ninh
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long – Quảng Ninh được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong mặt phẳng (a) cho hai tia Ox, Oy góc xOy = 60 độ. Trên tia Oz vuông góc với mặt phẳng (a) tại O, lấy điểm S sao cho SO = a. Gọi M, N là các điểm lần lượt di động trên hai tia Ox, Oy sao cho OM + ON = a (a > 0 và M, N khác O). Gọi H, K lần lượt là hình chiếu vuông góc của O trên hai cạnh SM, SN. Mặt cầu ngoại tiếp đa diện MNHOK có diện tích nhỏ nhất bằng? + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = a3. Mặt bên SAB là tam giác cân và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của AB, K là trung điểm của AD. Khoảng cách giữa hai đường SD và HK bằng? + Cho một đa giác đều có 20 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là các đỉnh của đa giác trên. Xác suất để chọn một tam giác từ tập X là tam giác vuông nhưng không phải là tam giác cân bằng?