Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2023 trường THCS Quỳnh Lập - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm 2023 trường THCS Quỳnh Lập, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2023 trường THCS Quỳnh Lập – Nghệ An : + Một phân xưởng theo kế hoạch cần phải sản xuất 630 sản phẩm trong một số ngày. Do mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm nên phân xưởng đã hoàn thành kế hoạch sớm hơn quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng phải sản xuất bao nhiêu sản phẩm? + Một chai dung dịch rửa tay khô hình trụ cao 12cm, đường kính đáy bằng 5cm. Tính thể tích chai dung dịch đó? (bỏ qua chiều dày của vỏ chai và lấy π ≈3,14). + Cho tam giác ABC vuông cân tại A. Đường tròn đường kính AB cắt BC tại D (D khác B). Lấy điểm M bất kì trên AD. Kẻ MH, MI lần lượt vuông góc với AB, AC (H thuộc AB, I thuộc AC) a) Chứng minh: tứ giác BDMH nội tiếp b) Chứng minh MID = MBC c) Kẻ HK vuông góc với ID (K thuộc ID). Chứng minh: K, M, B thẳng hàng và đường thẳng HK luôn đi qua một điểm cố định khi M di động trên AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT Đào Duy Từ - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Đào Duy Từ – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đoạn thẳng AB và C là một điểm nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax  By vuông góc với AB. Trên tia Ax lấy một điểm I (I khác A ), đường thẳng vuông góc với tia CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại điểm thứ hai P 1) Chứng minh bốn điểm C, P, K, B cùng thuộc một đường tròn 2) Chứng minh AI.BK = AC.BC 3) Cho biết A,B,I cố định. Xác định vị trí điểm C trên đoạn thẳng AB sao cho diện tích hình thang vuông ABKI là lớn nhất [ads] + Giải phương trình (a – 1)x^2 – 4x + 3 = 0 trong mỗi trường hợp sau: a) Khi a = 1 b) Khi a = 2
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau. + Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB, ABC, BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH 1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB 3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF 4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 2 góc DIJ và DFC bằng nhau [ads] + Cho hai hàm số y = -1/2x^2 và y = x – 4 có đồ thị lần lượt là (P) và (d) 1) Vẽ hai đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2 – Dùng riêng cho học sinh chuyên Toán và chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) bán kính R và một điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MA, MB tới đường tròn (O) (A, B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm C (C khác A, C khác B). Gọi I; K là trung điểm MA, MC. Đường thẳng KA cắt đường tròn (O) tại điểm thứ hai D 1. Chứng minh KO^2 – KM^2 = R^2 2. Chứng minh tứ giác BCDM là tứ giác nội tiếp 3. Gọi E là giao điểm thứ hai của đường thẳng MD với đường tròn (O) và N là trung điểm KE đường thẳng KE cắt đường tròn (O) tại điểm thứ hai F. Chứng minh rằng bốn điểm I, A, N, F cùng nằm trên một đường tròn [ads] + Xét hình bên: Ta viết các số 1, 2, 3, 4 … 9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hai cách viết được gọi là như nhau nếu bộ số viết ở các điểm (A;B;C;D;E;F;G;H;K) của mỗi cách là trùng nhau. Hỏi có bao nhiêu cách viết phân biệt? Tại sao?