Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải một số bài toán ứng dụng thực tiễn - Trần Hoàng Long

Tài liệu gồm 71 trang tuyển chọn và giải chi tiết một số bài toán thực tế vận dụng kiến thức Toán lớp 10, 11 và 12. Việc vận dụng kiến thức toán học vào giải quyết các vấn đề thực tiễn là một vấn đề quan trọng trong dạy và học toán ở trường phổ thông. Điều này đó được thể hiện từ trong đề thi THPT quốc gia và đề thi minh họa của Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện hành, nhất là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có nhiều lợi thế trong việc lồng ghép những bài toán mang tính thực tế cao, chẳng hạn: Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (Lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (Lớp 12) … Những chủ đề có vai trò rất quan trọng trong việc rèn luyện cho học sinh kỹ năng vận dụng kiến thức Toán học vào thực tiễn . Tuy nhiên, vì nhiều lý do ít được sự quan tâm, chú ý khai thác của người dạy và người học toán. Trong chuyên đề này, tôi cố gắng làm những công việc sau đây: + Phân loại các bài tập theo từng chủ đề kiến thức + Cố gắng sưu tầm càng nhiều càng tốt các tình huống thực tiễn từ đó nếu lên bài toán thực tế cần phải giải quyết, vận dụng kiến thức toán đă học để giải quyết vấn đề + Xây dựng hệ thống các bài toán thực tế theo từng chủ đề kiến thức. Mặc dù đă rất cố gắng nhưng do khả năng hạn chế nên chuyên đề này chắc chắn sẽ còn nhiều hạn chế, kính mong quý thầy, cô đóng góp ý kiến để tài liệu này tốt hơn ở tương lai [ads] Các chủ đề trong tài liệu : 1. Chủ đề đạo hàm: Đây là công cụ hữu hiệu trong việc tìm cực trị; tìm giá trị lớn nhất, nhỏ nhất của hàm số. Thông qua việc dạy học kiến thức này, ta có thể cho học sinh giải những bài toán thực tiễn khá hấp dẫn và mang nhiều ý nghĩa. 2. Chủ đề hàm số: Từ tình huống thực tế cần giải quyết, tiến hành thực nghiệm, thu thập các số liệu từ đó lập ra hàm số sau đó khảo sát hàm số tm ra phương án tối ưu cho vấn đề cần giải quyết. 3. Chủ đề hệ bất phương trình bậc nhất hai ẩn: Trong chủ đề này có thể khai thác được nhiều dạng toán gần gũi với đời sống thực tiễn như: Bài toán vận tải, Bài toán sản xuất đồng bộ, Bài toán thực đơn, Bài toán lập kế hoạch sản xuất trong điều kiện tài nguyên hạn chế, Bài toán vốn đầu tư nhỏ nhất, Bài toán pha trộn … 4. Chủ đề dãy số, cấp số cộng, cấp số nhân 5. Chủ đề giải tích tổ hợp, xác suất

Nguồn: toanmath.com

Đọc Sách

Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB
Nội dung Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB Bản PDF - Nội dung bài viết Giới thiệu về sách Công phá kỹ thuật CasioNội dung chính của sách Giới thiệu về sách Công phá kỹ thuật Casio Sytu đem đến cho bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – một nguồn tư liệu quý giá giúp bạn tự tin hơn khi học Toán ở các cấp độ lớp 10, 11, 12. Cuốn sách này có tổng cộng 496 trang và được biên soạn bởi hai tác giả tài năng Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính của sách Trước hết, trong phần 1 của sách, bạn sẽ được giới thiệu tổng quan về các tính năng trên máy tính Casio cầm tay. Tất cả các phím chức năng và công dụng của chúng được trình bày một cách chi tiết và đầy đủ, giúp bạn hiểu rõ hơn về cách sử dụng máy tính Casio trong giải toán, đặc biệt phù hợp với những học sinh mới bắt đầu làm quen với máy tính này. Phần 2 của sách tập trung vào các chủ đề Toán sử dụng máy tính Casio, bao gồm 11 chủ đề từ lớp 10 đến lớp 12. Các chủ đề này bao gồm cả đại số, giải tích và hình học, với nội dung về hàm số, giới hạn, tổ hợp, xác suất, hàm số lượng giác, phương trình, hệ phương trình, bất phương trình, và nhiều nội dung khác. Mỗi chủ đề được trình bày kỹ lưỡng, cung cấp ví dụ và bài tập rèn luyện, giúp bạn hiểu rõ hơn cách giải và áp dụng công thức vào thực tế. Cuối cùng, sách còn cung cấp các kỹ thuật bổ trợ, công thức giải nhanh cùng ví dụ áp dụng và hướng dẫn chi tiết để bạn có thể áp dụng kiến thức một cách linh hoạt và hiệu quả.
Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long
Nội dung Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long Bản PDF - Nội dung bài viết Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu này bao gồm 71 trang chọn lọc và hướng dẫn chi tiết cách giải một số bài toán thực tế sử dụng kiến thức Toán từ lớp 10 đến lớp 12. Việc áp dụng kiến thức toán học vào việc giải quyết các vấn đề thực tế là một phần quan trọng trong quá trình dạy và học toán ở trường phổ thông. Điều này được thể hiện rõ trong đề thi THPT quốc gia và các đề thi minh họa từ Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện tại, đặc biệt là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có thể được áp dụng vào việc giải quyết bài toán thực tế, như Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (lớp 12) và nhiều chủ đề khác. Qua tài liệu này, Trần Hoàng Long đã phân loại bài tập theo từng chủ đề kiến thức, tập trung vào việc sưu tầm các tình huống thực tiễn để từ đó tạo ra các bài toán thực tế cần giải quyết, áp dụng kiến thức toán học để giải quyết vấn đề. Ông cũng xây dựng hệ thống bài toán thực tế theo từng chủ đề kiến thức, giúp học sinh rèn luyện kỹ năng áp dụng kiến thức toán vào thực tiễn. Các chủ đề trong tài liệu bao gồm: Đạo hàm: Một công cụ quan trọng để tìm cực trị, giá trị lớn nhất, nhỏ nhất của hàm số. Được áp dụng để giải quyết những bài toán thực tế hấp dẫn và ý nghĩa. Hàm số: Từ tình huống thực tế, ta thu thập số liệu, lập hàm số và khảo sát để đưa ra phương án tối ưu. Hệ bất phương trình bậc nhất hai ẩn: Chủ đề này khai thác nhiều dạng toán gần gũi với cuộc sống như bài toán vận tải, sản xuất đồng bộ, lập kế hoạch sản xuất, vốn đầu tư nhỏ nhất, pha trộn v.v. Tài liệu này hướng đến việc giúp học sinh áp dụng kiến thức toán học vào thực tiễn một cách hiệu quả, và mong muốn nhận được phản hồi tích cực từ giáo viên và học sinh để cải thiện tài liệu trong tương lai.
Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế
Nội dung Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế Bản PDF - Nội dung bài viết Ứng dụng phương pháp và kỹ năng cao trong giải các bài toán thực tế Ứng dụng phương pháp và kỹ năng cao trong giải các bài toán thực tế Cuốn sách "Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế" của tác giả Trần Công Diêu và Nguyễn Văn Quang bao gồm 444 trang chuyên sâu, giúp bạn hiểu rõ và áp dụng các phương pháp giải bài toán thực tế và bài toán cao cấp trong các lĩnh vực khác nhau. Sách này đã được tuyển chọn kỹ lưỡng và hướng dẫn cách giải chi tiết, từng bước một, giúp bạn nâng cao kỹ năng giải quyết vấn đề một cách hiệu quả. Với nhiều bài toán thực tế và vận dụng cao, cuốn sách cung cấp cho bạn kiến thức sâu rộng và những kỹ năng cần thiết để áp dụng vào thực tế.
Sổ tay Hình học 10 11 12
Nội dung Sổ tay Hình học 10 11 12 Bản PDF - Nội dung bài viết Sổ tay Hình học 10 11 12: Thông tin chi tiết Sổ tay Hình học 10 11 12: Thông tin chi tiết Cuốn sổ tay Hình học 10 - 11 - 12 là tài liệu hữu ích giúp học sinh lớp 10, 11, 12 nắm vững lý thuyết, công thức và phương pháp giải các dạng toán hình học một cách nhanh chóng. Với 76 trang, sổ tay được chia thành 5 chương chính bao gồm: Chương 1: Vectơ - bao gồm kiến thức cơ bản về vectơ và cách sử dụng trong giải toán. Chương 2: Hệ thức lượng trong tam giác - giúp học sinh hiểu rõ về các định lí lượng trong tam giác và áp dụng vào việc giải các bài tập liên quan. Chương 3: Tọa độ trong không gian 2 chiều - cung cấp kiến thức về tọa độ trong mặt phẳng và cách sử dụng để giải các bài toán. Chương 4: Hình học không gian cổ điển - giới thiệu về các khái niệm cơ bản trong hình học không gian và cách áp dụng vào các bài tập thực tế. Chương 5: Tọa độ trong không gian 3 chiều - là phần mở rộng với tọa độ 3 chiều, giúp học sinh hiểu rõ hơn về không gian 3 chiều và cách sử dụng tọa độ trong giải các bài toán. Với cấu trúc chặt chẽ và dễ hiểu, cuốn sổ tay hình học này sẽ là người bạn đồng hành đắc lực giúp học sinh ôn tập và nắm vững kiến thức trước kì thi sắp tới.