Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 1 cụm trường THPT TP Vũng Tàu

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 nội dung đề thi thử Toán THPT Quốc gia 2019 lần 1 cụm trường THPT TP Vũng Tàu, kỳ thi được diễn ra vào Chủ Nhật ngày 10 tháng 03 năm 2019 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019 và còn khoảng hơn 3 tháng nữa là kỳ thi THPT Quốc gia 2019 môn Toán sẽ diễn ra. Đề thi thử Toán THPT Quốc gia 2019 lần 1 cụm trường THPT TP Vũng Tàu có mã đề 357 được biên soạn dựa trên cấu trúc đề tham khảo THPT Quốc gia 2019 môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 08 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, học sinh có 90 phút để làm bài, đề thi có đáp án mã đề 132, 209, 357, 485. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 1 cụm trường THPT TP Vũng Tàu : + Một mảnh vườn hoa có dạng hình tròn bán kính bằng 5m. Phần đất trồng hoa là phần tô trong hình vẽ bên. Kinh phí để trồng hoa là 50.000 đồng/m2. Hỏi số tiền (làm tròn đến hàng đơm vị) cần để trồng hoa trên diện tích phần đất đó là bao nhiêu, biết hai hình chữ nhật ABCD và MNPQ có AB = MQ = 5m. + Bà Hoa gửi vào ngân hàng 120 triệu đồng theo hình thức lãi suất kép. Lãi suất ngân hàng là 8% năm và không thay đổi qua các năm bà gửi tiền. Sau 5 năm bà cần tiền để sửa nhà, bà Hoa đã rút toàn bộ số tiền và sử dụng một nửa số tiền đó vào việc sửa nhà, số còn lại bà Hoa tiếp tục gửi ngân hàng với hình thức như trên thêm 5 năm nữa. Hỏi tổng số số tiền lãi bà Hoa đã thu được sau hai lần gửi gần nhất với số tiền nào dưới đây? + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 4 học sinh trường A và 4 học sinh trường B ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để bất kì 2 học sinh nào ngồi cạnh nhau hoặc ngồi đối diện nhau đều khác trường bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi - Hải Dương
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi – Hải Dương mã đề 824 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi – Hải Dương : + COVID19 là một loại bệnh viêm đường hô hấp cấp do chủng mới của virus corona (nCoV) bắt nguồn từ Trung Quốc (đầu tháng 12/2019) gây ra với tốc độ truyền bệnh rất nhanh (tính đến ngày 2/6/2020 đã có 6.365.173 người nhiễm bệnh). Giả sử ban đầu có 1 người bị nhiễm bệnh và cứ sau 1 ngày sẽ lây sang a người khác (a thuộc N*). Tất cả những người nhiễm bệnh lại tiếp tục lây sang những người khác với tốc độ như trên (1 người lây a người). Tìm a biết sau 7 ngày có tổng cộng 16384 người mắc bệnh (giả sử rằng những người nhiễm bệnh không phát hiện bản thân bị bệnh, không phòng tránh cách li và trong thời gian ủ bệnh vẫn lây bệnh sang người khác được). [ads] + Gọi A là tập các số tự nhiên có 5 chữ số đôi một khác nhau được lập từ các số 1; 2; 3; 4; 5; 6; 7; 8; 9. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được luôn có mặt hai chữ số 1; 2 và chúng không đứng cạnh nhau. + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = f(cosx) – 2cosx – m cắt trục hoành tại điểm có hoành độ thuộc khoảng (-pi/2;pi/2).
Đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT - Nghệ An
Chiều thứ Bảy ngày 13 tháng 06 năm 2020, cụm các trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An đã tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn Toán. Đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT – Nghệ An mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT – Nghệ An : + Ông A có số tiền là 100 000 000 đồng gửi tiết kiệm theo thể thức lãi kép, có hai loại kì hạn: loại kì hạn 12 tháng với lãi suất là 12% / năm và loại kì hạn 1 tháng với lãi suất 1% / tháng. Ông A muốn gửi 10 năm. Theo anh chị, kết luận nào sau đây đúng (làm tròn đến hàng nghìn). A. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 16 186 000 đồng sau 10 năm. B. Cả hai loại kì hạn đều có cùng số tiền như nhau sau 10 năm. C. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 19 454 000 đồng sau 10 năm. D. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 15 584 000 đồng sau 10 năm. [ads] + Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ tập S. Tính xác suất để số được chọn có đúng 2 chữ số chẵn. + Cho hình chóp S.ABC, đáy là tam giác ABC có AB = BC√5, AC = 2BC√2, hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc x thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng √a/b, trong đó a và b thuộc N*, a là số nguyên tố. Tổng a + b bằng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GDĐT Hưng Yên
Chiều thứ Sáu ngày 12 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn thi Toán. Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Hưng Yên có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, bản PDF và đáp án đề thi này sẽ được cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Hưng Yên : + Cho hàm số y = -x^4 + 2x^2 + 3. Mệnh đề nào sau đây là đúng? A. Đồ thị hàm số có một điểm cực đại và không có điểm cực tiểu. B. Đồ thị hàm số có một điểm cực tiểu và hai điểm cực đại. C. Đồ thị hàm số có một điểm cực tiểu và không có điểm cực đại. D. Đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu. + Cho hình trụ có O, O’ là tâm hai đáy. Xét hình chữ nhật ABCD có A, B cùng thuộc (O) và C, D cùng thuộc (O’) sao cho AB = a√3, BC = 2a đồng thời (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Số lượng của một loại vi khuẩn X trong phòng thí nghiệm được tính theo công thức x(t) = x(0).2^t, trong đó x(0) là số lượng vi khuẩn X ban đầu, x(t) là số lượng vi khuẩn X sau t phút. Biết sau 2 phút thì số lượng vi khuẩn X là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn X là 5 triệu con?
Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GDĐT Bắc Ninh
Chiều thứ Sáu ngày 12 tháng 06 năm 2020, phòng quản lý chất lượng sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn thi Toán. Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Bắc Ninh có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, bản PDF và đáp án đề thi này sẽ được cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Bắc Ninh : + Cho tứ diện ABCD có thể tích bằng 18. Gọi A1 là trọng tâm tam giác BCD; (P) là mặt phẳng qua A sao cho góc giữa (P) và (BCD) bằng 60°. Các đường thẳng qua B, C, D song song với AA1 cắt mặt phẳng (P) lần lượt tại B1, C1, D1. Thể tích khối tứ diện A1B1C1D1 bằng? [ads] + Cho hàm số bậc ba y = f(x) có đồ thị đi qua các điểm A(1;1), B(2;4), C(3;9). Các đường thẳng AB, AC, BC lại cắt đồ thị tại lần lượt tại các điểm M, N, P (M khác A và B, N khác A và C, P khác B và C). Biết rằng tổng các hoành độ của M, N, P bằng 5. Giá trị của f(0) là? + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA vuông góc với (ABCD), AB = BC = a, AD = 2a, SA = a√2. Gọi E là trung điểm của AD. Bán kính mặt cầu đi qua các điểm S, A, B, C, E bằng?