Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 7 môn Toán năm 2019 2020 phòng GD ĐT Lục Nam Bắc Giang

Nội dung Đề thi HSG lớp 7 môn Toán năm 2019 2020 phòng GD ĐT Lục Nam Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 7 năm 2019-2020 phòng GD&ĐT Lục Nam - Bắc Giang Đề thi HSG Toán lớp 7 năm 2019-2020 phòng GD&ĐT Lục Nam - Bắc Giang Ngày 01 tháng 06 năm 2020, Hội đồng Giáo dục và Đào tạo Lục Nam, tỉnh Bắc Giang đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán cho học sinh lớp 7 năm học 2019-2020. Đề thi bao gồm một trang với 5 bài toán dạng tự luận và thời gian làm bài là 150 phút. Trong đề thi, có một bài toán đề cập đến một cửa hàng có ba cuộn vải với tổng chiều dài 186m. Giá tiền mỗi mét vải của ba cuộn vải đều như nhau. Sau khi bán được một ngày, cửa hàng còn lại 2/3 cuộn vải thứ nhất, 1/3 cuộn vải thứ hai và 3/5 cuộn vải thứ ba. Số tiền bán được của ba cuộn tỉ lệ với 2 : 3 : 2. Yêu cầu là tính số vải đã bán được của mỗi cuộn vải trong ngày đó. Bên cạnh đó, đề thi còn yêu cầu học sinh tìm các số nguyên dương x, y, z sao cho x + y + z = xyz, cũng như chứng minh rằng với số nguyên n không chia hết cho 2 và 3, biểu thức 4n^2 + 3n + 5 sẽ chia hết cho 6. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức và kỹ năng toán học một cách logic và tỉ mỉ để có thể giải quyết các bài toán phức tạp từ đề thi. Đây là nơi thách thức và thể hiện năng lực của học sinh lớp 7 về môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2022. Trích dẫn đề thi Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Tìm số thứ mười bảy? + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID.
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.
Đề thi HSG cấp trường Toán 7 năm 2020 - 2021 trường THCS Cẩm Bình - Hà Tĩnh
Đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh : + Tam giác ABC có các tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo của góc A biết BOC = 120°. + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC.
Đề thi học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Trực Ninh - Nam Định
Đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định : + Cho ABC vuông tại A có B 2C. Kẻ AH BC (H BC). Trên tia HC lấy D sao cho HD HB. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E AD). a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh DH DE HE AC. c) So sánh 2 HE và 2 2 4 BC AD. d) Gọi K giao AH và CE, lấy điểm I bất kì thuộc đoạn thẳng HE I khác H; I khác E. Chứng minh 3 2 AC IA IK IC. + Chứng minh đa thức sau không có nghiệm. + Chứng minh rằng 2021 10 539 9 có giá trị là một số tự nhiên.