Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 - 2024 trường Thị trấn Diễn Châu - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Thị trấn Diễn Châu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 trường Thị trấn Diễn Châu – Nghệ An : + Trong dịp kỷ niệm 50 năm thành lập huyện, 180 học sinh được điều về tham gia diễu hành, người ta tính : nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều động ít hơn dùng loại xe nhỏ là 2 chiếc. Biết rằng mỗi ghế ngồi 1 học sinh và mỗi xe lớn nhiều hơn xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động. + Một bể nước phía trên là hình trụ cao 4m, bán kính đáy là 1,2m. Đáy lõm xuống hình nửa mặt cầu. Tính diện tích bề mặt ngoài của bể, biết bể không có nắp (lấy π 3,14 các kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O) bán kính R, đường thẳng d không qua O và cắt đường tròn tại hai điểm. Từ một điểm C trên d (A nằm giữa B và C) kẻ hai tiếp tuyến CM, CN với đường tròn (thuộc M và O nằm cùng phía đối với AB), MN cắt OC tại H. a) Chứng minh tứ giác CMON nội tiếp. b) Chứng minh. c) Một đường thẳng đi qua O và song song với MN cắt các tia CM, CN lần lượt tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định (Đề 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2); đề thi dành cho học sinh thi vào các lớp chuyên xã hội; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2) : + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. 1) Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. 2) Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh AP EF và AP // IK. 3) Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng M là trung điểm của đoạn BC và HMC HAN. + Tìm tất cả các giá trị của tham số m để đường thẳng y mx 1 (m ≠ 0) và đường thẳng y x 9 2 song song. + Tính thể tích của hình nón có chiều cao bằng 4cm và bán kính đáy 3cm.
Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Quý Đôn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2021 – 2022 các trường PTDTNT và trường THPT chuyên Lê Quý Đôn, tỉnh Lai Châu; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Quý Đôn – Lai Châu : + Một ô tô khách và một ô tô tải chở vật liệu xây dựng khởi hành cùng một lúc từ bến xe khách Lai Châu đến trung tâm thị trấn Mường Tè. Do trọng tải lớn nên xe tải chở vật liệu xây dựng đi với vận tốc chậm hơn xe khách 10 km/h. Xe khách đến trung tâm thị trấn Mường Tè sớm hơn xe tải 1 giờ 6 phút. Tính vận tốc mỗi xe biết quãng đường từ bến xe khách thành phố Lai Châu đến trung tâm thị trấn Mường Tè là 132 km. + Cho đường tròn tâm (O;R), từ một điểm A trên đường tròn kẻ tiếp tuyến d với đường tròn tâm O. Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ tiếp tuyến thứ hai MB (B là tiếp điểm). a. Chứng minh tứ giác AMBO là tứ giác nội tiếp đường tròn. b. Gọi I là giao điểm của AB và OM. Chứng minh 2 2 4 AB OI OM R OI IM. c. Gọi điểm H là trục tâm của tam giác MAB. Tìm quỹ tích điểm H khi điểm M di chuyển trên đường thẳng d. + Giải các phương trình và hệ phương trình.
Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng; kỳ thi được diễn ra vào ngày 9 – 10 – 11 tháng 06 năm 2021; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng : + Trường THCS X có 60 giáo viên. Tuổi trung bình của tất cả thầy giáo và cô giáo là 42 tuổi. Biết rằng tuổi trung bình của các thầy giáo là 50, tuổi trung bình của các cô giáo là 38. Hỏi trường THCS X có bao nhiêu thầy giáo, bao nhiêu cô giáo? + Cho hình vuông ABCD. Vẽ đường tròn tâm O đường kính BC và đường tròn A AB chúng cắt nhau tại một điểm thứ hai là E (E khác B). Tia CE cắt AD tại điểm F. Chứng minh rằng F là trung điểm của AD. + Cho hình bình hành ABCD có 0 BAD 90. Gọi H là chân đường vuông góc kẻ từ A đến BC. Đường trung tuyến kẻ từ C của tam giác ABC cắt đường tròn ngoại tiếp tam giác ABC tại K. Chứng minh rằng bốn điểm K H D C cùng thuộc một đường tròn.
Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Kiên Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Kiên Giang; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Kiên Giang : + Có bốn căn phòng nằm liên tiếp nhau, thành một hàng ngang. Có một con chuột trốn trong các căn phòng đó; mỗi ngày nó trốn trong một căn phòng. Có một chú mèo tìm cách bắt con chuột này. Cứ mỗi tối, mèo ta vào một căn phòng, và nếu con chuột đang trốn ở căn phòng ấy thì nó sẽ bị mèo bắt. Biết rằng, nếu chưa bị mèo bắt mỗi sáng, con chuột lại chạy sang trốn ở căn phòng nằm ngay bên cạnh. Hỏi chú mèo có thể đảm bảo chắc chắn sẽ bắt được con chuột sau tối đa bốn tối hay không? Vì sao? + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Cho O O 1 2 là hai đường tròn, cắt nhau tại điểm A M sao cho O AO 1 2 là góc tù. Tiếp tuyến tại A của O1 cắt O2 tại điểm thứ hai B (khác A). Tiếp tuyến tại A của O2 cắt O1 tại điểm thứ hai D (khác A). a) Trên cung AD không chứa M của O1, lấy điểm K, khác A và D, sao cho đường thẳng KM cắt cung AB không chứa M của O2 tại điểm L, khác A và B. Chứng minh rằng đường thẳng AK song song với đường thẳng BL. b) Gọi C là điểm đối xứng của A qua M. Chứng minh rằng ABCD là tứ giác nội tiếp.