Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Nguyễn Tất Thành Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Nguyễn Tất Thành Hà Nội Bản PDF Thứ Năm ngày 05 tháng 12 năm 2019, trường THCS&THPT Nguyễn Tất Thành, trực thuộc trường Đại học Sư phạm Hà Nội tổ chức kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội mã đề 04 gồm có 02 trang, đề gồm có 12 câu trắc nghiệm và 04 tự luận, học sinh có 90 phút để hoàn thành bài thi học kỳ. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội : + Tìm mệnh đề đúng trong các mệnh đề sau: A. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó. B. Nếu hai mặt phẳng (a) và (b) song song với nhau thì mọi đường thẳng nằm trong (a) đều song song với mọi đường thẳng nằm trong (b). C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (a) và (b) thì (a) và (b) song song với nhau. D. Nếu hai mặt phẳng (a) và (b) song song với nhau thì mọi đường thẳng nằm trong (a) đều song song với (b). [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành ABCD với O là giao điểm hai đường chéo AC và BD. Gọi M, N lần lượt là trung điểm các cạnh SA và SD. 1. Chứng minh MO song song với mặt phẳng (SBC) và mặt phẳng (AMN) song song với mặt phẳng (SBC). 2. Gọi K là trung điểm của MO. Chứng minh rằng NK song song với (SBC). 3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN). Hỏi thiết diện là hình gì? + Trong một nhóm học sinh khối 11 trường THCS&THPT Nguyễn Tất Thành – ĐHSP Hà Nội tham gia hoạt động thiện nguyện gồm 3 học sinh nữ và 7 học sinh nam. Cần chọn ra 5 học sinh tham gia trong đợt thứ nhất. Tính xác suất để 5 học sinh được chọn không có quá 1 học sinh nữ.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường chuyên Hạ Long Quảng Ninh
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường chuyên Hạ Long Quảng Ninh Bản PDF Đề thi HK1 Toán lớp 11 năm học 2016 – 2017 trường chuyên Hạ Long – Quảng Ninh gồm 50 câu hỏi trắc nghiệm khách quan. Đề thi dành cho học sinh theo chương trình chuẩn. Trích một số bài toán trong đề thi: + Cho 6 chữ số 2;3;4;5;6;7. Từ các chữ số trên có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1; G2 lần lượt là trọng tâm của tam giác ABC và SBC. Trong các mệnh đề sau, mệnh đề nào SAI? A. G1G2 // (SAD) B. G1G2 và SA không có điểm chung C. G1G2 //(SAB) D. G1G2 và SA là hai đường thẳng chéo nhau + Trong một bài thi trắc nghiệm khách quan có 10 câu. Mỗi câu có 4 phương án trả lời, trong đó chỉ có một câu trả lời đúng. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời. Tính xác suất để học sinh đó trả lời đúng từ 9 câu trở lên.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường Nguyễn Thị Minh Khai TP.HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường Nguyễn Thị Minh Khai TP.HCM Bản PDF Đề thi HK1 Toán lớp 11 năm học 2016 – 2017 trường Nguyễn Thị Minh Khai – TP.HCM gồm 6 câu hỏi tự luận, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Lớp 11A có 15 học sinh nam và 25 học sinh nữ. Lớp 11B có 12 học sinh nam và 18 học sinh nữ. Trường chọn ngẫu nhiên từ mỗi lớp ra 2 học sinh ñể tham gia vào đội nhảy cổ động. Gọi A là biến cố “Trong 4 học sinh ñược chọn có 2 nam và 2 nữ”. Hãy tính xác suất của biến cố A? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung ñiểm của SC và G là trọng tâm tam giác ABC. a/ Tìm giao điểm I của AM và mặt phẳng (SBD). Chứng minh I là trọng tâm tam giác SBD. b/ Chứng minh IG song song với mặt phẳng (SAB). c/ Mặt phẳng (P) chứa AM và song song với BD cắt SB, SD lần lượt tại hai điểm E và F. Tìm thiết diện của mặt phẳng (P) và hình chóp S.ABCD. d/ Gọi K là giao điểm của ME và CD, J là giao điểm của MF và CD. Chứng minh ba điểm K, A, J nằm trên một đường thẳng song song với EF. Tính tỉ số EF/KJ
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường THPT Trung Giã Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường THPT Trung Giã Hà Nội Bản PDF Đề thi HK1 Toán lớp 11 năm học 2016 – 2017 trường THPT Trung Giã – Hà Nội gồm 50 câu hỏi trắc nghiệm khách quan, có đáp án. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SA. Thiết diện của hình chóp cắt bởi mặt phẳng (IBC) là: A. Tứ giác IBCD B. Hình thang IGBC C. Hình thang IJCB (J là trung điểm của SD) D. Tam giác IBC + Tìm mệnh đề sai trong các mệnh đề sau: A. Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau. B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song với nhau thì sẽ cắt mặt phẳng còn lại. C. Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì chúng song song. D. Nếu hai mặt phẳng có một điểm chung thì chúng còn vô số điểm chung khác nữa. + Trong một môn học, cô giáo có 30 câu hỏi khác nhau trong đó có 15 câu hỏi khó, 10 câu hỏi trung bình và 5 câu hỏi dễ. Hỏi cô giáo có bao nhiêu cách để lập ra đề thi từ 30 câu hỏi đó, sao cho mỗi đề có 5 câu hỏi khác nhau và mỗi đề phải có đủ ba loại câu hỏi ?
Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2014 2015
Nội dung Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2014 2015 Bản PDF Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm. Trích một số bài toán trong đề thi: + Một bình chứa 15 quả cầu, với 4 quả cầu xanh, 5 quả cầu đỏ và 6 quả cầu vàng. Lấy ngẫu nhiên 4 quả cầu. Tính xác suất để trong 4 quả cầu lấy được có đủ ba màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB song song với CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB và P là điểm thuộc cạnh BC sao cho BP = 3PC. 1. Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (SCD). 2. Tìm giao điểm của đường thẳng MP và mặt phẳng (SBD).