Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Ngọc Tảo Hà Nội

Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Ngọc Tảo Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Ngọc Tảo, thành phố Hà Nội; đề thi có đáp án và thang điểm. Trích dẫn Đề cuối kỳ 1 Toán lớp 11 năm 2023 – 2024 trường THPT Ngọc Tảo – Hà Nội : + Cho hình vuông (C1) có cạnh bằng 2a. Người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông (C2) (Hình vẽ bên). Từ hình vuông (C2) lại tiếp tục làm như trên ta nhận được dãy các hình vuông C1 C2 C3 Cn. Gọi Si là diện tích của hình vuông C i. + Ở một góc khuôn viên hình tam giác, bác An dự định trồng một vườn cây ăn trái gồm 20 hàng cây theo quy tắc như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi, số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi bác An cần chuẩn bị bao nhiêu cây để trồng? + Cho hình chóp S.ABCD có đáy ABCD là một tứ giác (AB không song song với CD). Gọi M là trung điểm của SC N, là điểm nằm trên cạnh SA sao cho SN NA 2. Giao điểm của MN với (ABCD) là điểm K. Khi đó K cũng là giao điểm của MN với đường thẳng nào sau đây? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 3 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Một đội văn nghệ của trường có 8 tiết mục múa hát và 4 tiết mục kịch. Hỏi có bao nhiêu cách chọn 5 tiết mục đi dự thi trong đó có ít nhất 2 tiết mục kịch. + Có hai hộp cầu, mỗi hộp chứa 15 quả cầu được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ mỗi hộp một quả cầu. Tính xác suất để tích số trên hai quả cầu thỏa mãn: a. là một số lẻ. b. là một số chia hết cho 6. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trọng tâm của tam giác SAB và SAD. 1. Chứng minh rằng MN song song với mặt phẳng (ABCD). 2. P là trung điểm của BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MNP). 3. Gọi Q là giao điểm của SB và mặt phẳng (MNP). Tính tỉ số SQ/SB
Đề thi HK1 lớp 11 trường THPT Thị Xã Quảng Trị 2014 - 2015
Đề thi HK1 lớp 11 trường THPT Thị Xã Quảng Trị năm học 2014 – 2015 gồm 5 bài toán. Trích một số bài toán trong đề thi: + Gieo đồng thời hai con súc sắc cân đối. Tính xác suất sao cho: 1/ Hai con súc sắc đều xuất hiện mặt chẵn. 2/ Tổng số chấm xuất hiện trên hai con súc sắc bằng 7. + Cho hình chóp S.ABCD, đáy là hình hành ABCD có tâm O. Gọi M là trung điểm của SC. 1/ Xác định giao tuyến của mp(SAC) và mp(SBD), mp(SAB) và mp(SCD). 2/ Gọi N là trung điểm của OB, hãy xác định giao điểm I của mp(AMN) với SD. Xác định thiết diện khi cắt hình chóp S.ABCD bởi mặt phẳng (AMN). + Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm sáu chữ số khác nhau từng đôi một và trong mỗi số đó tổng của ba chữ số đầu nhỏ hơn tổng của ba chữ số cuối một đơn vị.
Đề thi HK1 lớp 11 trường THPT Gia Hội - Huế 2009 - 2010
Đề thi HK1 lớp 11 trường THPT Gia Hội – Huế năm học 2009 – 2010 gồm 2 phần: Phần chung có 3 bài toán, phần riêng mỗi phần 1 bài toán. Đề thi có đáp án và thang điểm. Trích một số bài toán trong đề thi: + Viết các chữ số: 1; 2; 3; 4; 5; 6; 7; 8; 9 lên 9 tấm phiếu, sau đó sắp thứ tự ngẫu nhiên 9 tấm phiếu đó thành một hàng ngang, ta được một số. Tính xác suất để số nhận được là: a/ Một số chẵn. b/ Một số lẻ. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trên đoạn AD sao cho: AD = 3AM. 1/ Đường thẳng qua M song song với AB cắt CI tại J. Chứng minh: Đường thẳng JG song song mặt phẳng (SCD). 2/ Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MGJ) là hình gì? Giải thích.
Đề thi HK1 lớp 11 trường THPT Vinh Lộc - Huế 2010 - 2011
Mục tiêu: + Khắc sâu các khái niệm, các định lý trong đại số và giải tích về hàm số lượng giác và phương trình lượng giác, tổ hợp – xác suất, dãy số – cấp số cộng; hình học trong mặt phẳng về phép dời hình và phép đồng dạng trong mặt phẳng; hình học không gian về đường thẳng và mặt phẳng song song. + Rèn luyện kĩ năng giải toán về tìm tập xác định, giải phương trình lượng giác, tìm hệ số trong khai triển nhị thức Niutơ, tìm số hạng tổng quát của một cấp số cộng… Tìm ảnh của một điểm, một đường thẳng qua phép biến hình. + Rèn luyện kĩ năng tìm giao tuyến của hai mặt phẳng, xác định giao điểm của một đường thẳng và một mặt phẳng, xác định thiết diện của một mặt phẳng và một hình chóp.