Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Giao Thuỷ Nam Định

Nội dung Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Giao Thuỷ Nam Định Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GD&ĐT Giao Thuỷ Nam Định Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GD&ĐT Giao Thuỷ Nam Định Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 - 2024 do phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định tổ chức. Đề thi bao gồm 20% câu hỏi trắc nghiệm và 80% câu hỏi tự luận, thời gian làm bài là 120 phút. Đề thi có đáp án và hướng dẫn chấm điểm. Một trong số các câu hỏi trong đề thi là: Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Vẽ cung tròn tâm C bán kính CA cắt BC tại D. Hãy tính diện tích phần tô đậm trong hình vẽ. Câu hỏi thứ hai yêu cầu chứng minh một số tính chất của tam giác và các đường tròn ngoại tiếp tam giác. Cuối cùng, có câu hỏi về hàm số bậc nhất y = m|x - 1| + 3. Yêu cầu tìm giá trị của tham số m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1. Nếu bạn muốn thử sức và cải thiện kiến thức Toán của mình, hãy tham gia vào đề thi thử này. Đề thi không chỉ giúp bạn ôn tập mà còn giúp bạn làm quen với cấu trúc và tính chất của đề thi tuyển sinh vào lớp 10. Hãy thử sức và kiểm tra kiến thức của mình ngay từ bây giờ!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Hải Dương
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán, để từ đó các trường THPT tại tỉnh Hải Dương có cơ sở tuyển chọn các em vào lớp 10 theo tiêu chí của trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 môn Toán năm 2018 - 2019 sở GD và ĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở GD và ĐT Tiền Giang gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 05/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở Tiền Giang : + Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. [ads] + Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. + Cho phương trình x^2 – 2x – 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.
Đề tuyển sinh vào lớp 10 THPT 2018 - 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên)
Đề tuyển sinh vào lớp 10 THPT 2018 – 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên) gồm 1 trang với 10 bài toán tự luận, thí sinh làm bài trong 120 phút (không tính thời gian phát đề), kỳ thi được tổ chức vào ngày 01 tháng 06 năm 2018, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.