Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng

Nội dung Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng Bản PDF Tài liệu dạy thêm và học thêm về chuyên đề hình có tâm đối xứng là một tài liệu học được thiết kế để hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm tổng cộng 14 trang, trong đó có một phần tóm tắt lý thuyết và các phần hướng dẫn phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề hình có tâm đối xứng.

Phần tóm tắt lý thuyết của tài liệu giải thích về khái niệm và cách kiểm tra xem một hình có tâm đối xứng hay không. Đầu tiên, để kiểm tra xem một hình có tâm đối xứng hay không, ta có thể lấy một điểm bất kỳ trên hoặc trong hình và lấy đối xứng qua tâm. Nếu điểm đó vẫn thuộc hình ban đầu, thì hình đó có tâm đối xứng. Ngược lại, nếu điểm đó không thuộc hình, thì hình không có tâm đối xứng.

Phần tiếp theo của tài liệu trình bày về các dạng bài liên quan đến tâm đối xứng của hình. Đối với những hình có tâm đối xứng, số cạnh của hình (viền ngoài) sẽ là số chẵn. Ví dụ như hình bình hành, hình chữ nhật, hình vuông và hình thoi. Trong thiên nhiên, hình ảnh của bông hoa có tâm đối xứng nằm ở giữa, hình ảnh của cỏ bốn lá cũng có tâm đối xứng. Ngoài ra, tâm đối xứng của hình có số cạnh bằng nhau chính là giao điểm của các đường chéo.

Tài liệu cũng giới thiệu về cách kiểm tra xem một chữ có tâm đối xứng hay không. Đầu tiên, ta cần đoán trước tâm đối xứng của chữ (thường là điểm nằm chính giữa chữ), sau đó lấy một điểm bất kỳ và kiểm tra. Nếu có một điểm khác đối xứng với điểm đã chọn mà vẫn thuộc chữ, thì chữ có tâm đối xứng.

Một phần khác của tài liệu đề cập đến việc vẽ hình đối xứng qua một điểm. Để vẽ một điểm A' đối xứng với điểm A qua tâm O, ta dựng một đường tròn với tâm O và bán kính là OA. Đường tròn này cắt đường thẳng OA tại điểm A' khác A. Khi đó, điểm A' là điểm đối xứng của A qua O. Để vẽ hai hình đối xứng qua một điểm O, ta chọn một số điểm đặc biệt thuộc hình đó, lấy đối xứng qua O và nối các điểm đó lại để tạo thành hình mới đối xứng với hình ban đầu qua tâm O.

Cuối cùng, tài liệu giới thiệu về cách tính độ dài, chu vi và diện tích của hình có tâm đối xứng. Khi tính toán độ dài đoạn thẳng có tâm đối xứng, ta chú ý rằng tâm đối xứng là điểm chính giữa hoặc trung điểm của đoạn thẳng đó. Nói cách khác, khi tâm đối xứng O là trung điểm của đoạn AB, ta có: OA = OB = AB/2. Tài liệu cũng liệt kê một số hình phẳng thường gặp có tâm đối xứng, như hình bình hành, hình vuông, hình chữ nhật, hình thoi và hình lục giác đều. Tâm đối xứng của các hình này tổn tại tại giao điểm của các đường chéo chính hoặc trung điểm của mỗi đường chéo.

Để tính toán chu vi và diện tích của các hình có tâm đối xứng, ta có thể áp dụng công thức đã học trong chương IV của môn Toán. Sau khi đo đạc và tính toán độ dài các cạnh và đường chéo, ta có thể sử dụng công thức để tính toán chu vi và diện tích của các hình.

Tài liệu này được định dạng file WORD để thuận tiện cho việc sử dụng bởi quý thầy cô giáo.

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề so sánh phân số
Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề so sánh phân số, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . So sánh hai phân số cùng mẫu dương. Trong hai phân số có cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn. Dạng 2 . So sánh hai phân số khác mẫu. Cách 1. Quy đồng mẫu số hai phân số rồi so sánh các tử số của chúng. – Bước 1: Quy đồng mẫu số của hai phân số (đưa các phân số về cùng mẫu số). – Bước 2: So sánh tử số của hai phân số cùng mẫu số đã quy đồng. Trong hai phân số có cùng mẫu số: + Phân số nào có tử số nhỏ hơn thì nhỏ hơn. + Phân số nào có tử số lớn hơn thì lớn hơn. Cách 2. Quy đồng tử số hai phân số rồi so sánh các mẫu số của chúng. – Bước 1: Quy đồng tử số (đưa về cùng tử số). + Lấy tử số và mẫu số của phân số thứ nhất nhân tử số của phân số thứ hai. + Lấy tử số và mẫu số của phân số thứ hai nhân tử số của phân số thứ nhất. – Bước 2: So sánh mẫu số của hai phân số đã quy đồng tử số. Trong hai phân số có cùng tử số: + Phân số nào có mẫu số nhỏ hơn thì lớn hơn. + Phân số nào có mẫu số lớn hơn thì nhỏ hơn. Dạng 3 . So sánh qua số trung gian. – Khi so sánh hai hay nhiều phân số, việc quy đồng đưa về cùng một mẫu số dương để so sánh tử số nhiều khi khá khó khăn, do đó, ta có thể chọn một phân số trung gian, dựa vào phân số trung gian này, ta sẽ so sánh được hai phân số ban đầu. * Dạng 3.1: So sánh qua số 0. * Dạng 3.2: So sánh qua số 1. * Dạng 3.3: So sánh qua một phân số trung gian phù hợp. Dạng 4 . So sánh qua phần bù (hay phần thiếu). So sánh qua phần bù áp dụng để so sánh hai phân số nhỏ hơn 1. Với phân số 1 a b thì 1 a b a b b được gọi là phần bù đến đơn vị của phân số a b. Trong hai phân số có phần bù tới đơn vị khác nhau, phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn. Dạng 5 . So sánh phần hơn (phần thừa) với đơn vị của các phân số. * Phần hơn với đơn vị của phân số là hiệu giữa phân số đó với 1. * Sử dụng cách so sánh bằng phần hơn khi: – Nhận thấy tất cả các phân số đều có tử số lớn hơn mẫu số (phân số lớn hơn 1) và hiệu của tử số với mẫu số đều bằng nhau hoặc nhỏ thì ta tìm phần hơn với 1. – Nhận thấy cả hai phân số đều có tử số lớn hơn mẩu số và nếu lấy tử số chia cho mầu số ở cả hai phân số thì có thương bằng nhau. – Nhận thấy cả hai phân số đều có tử số bé hơn mẫu số và nếu lấy mẫu số chia cho tử số ở cả hai phân số thì có thương bằng nhau. Dạng 6 . So sánh một tổng hoặc một tích nhiều phân số với một phân số. Bước 1: Tìm số chữ số của tổng. Bước 2: Tách số cố định thành tổng các chữ số. Bước 3: So sánh từng số của tổng với các chữ số vừa tách. Bước 4: Kết luận. Dạng 7 . Dạng bài tập phối hợp nhiều phương pháp. * Phương pháp so sánh hai phân số bằng cách “nhân thêm cùng một số vào hai phân số”: Ta sử dụng phương pháp nhân thêm cùng một số vào hai phân số khi nhận thấy tử số của hai phân số đều bé hơn mẫu số và nểu lấy mẫu số chia cho tử số thì có thương và số dư bằng nhau. Khi đó ta nhân cả hai phân số với cùng một số tự nhiên (là phần nguyên của thương) để đưa về dạng so sánh “phần bù”.
Tài liệu dạy thêm - học thêm chuyên đề bội và ước của một số nguyên
Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG BÀI. Dạng 1 . Tìm bội và ước của số nguyên. – Tập hợp các bội của số nguyên a có vô số phần tử và bằng k a k Z. – Tập hợp các ước số của số nguyên a a 0 luôn là hữu hạn. Cách tìm: Trước hết ta tìm các ước số nguyên dương của phần số tự nhiên a (làm như trong tập số tự nhiên), chẳng hạn là p q r. Khi đó p q r cũng là ước số của a. Do đó các ước của a là p q r. Như vậy số các ước nguyên của a gấp đôi số các ước tự nhiên của nó. Số ước nguyên dương của số m n t a x y z là m 1 n 1. Dạng 2 . Vận dụng tính chất chia hết của số nguyên. Để chứng minh một biểu thức A chia hết cho số nguyên a. – Nếu A có dạng tích m n p thì cần chỉ ra m (hoặc n hoặc p) chia hết cho a. Hoặc m chia hết cho 1 a n chia hết cho 2 a p chia hết cho 3 a trong đó 1 2 3 a a a a. – Nếu A có dạng tổng m + n + p thì cần chỉ ra m n p cùng chia hết cho a hoặc tổng các số dư khi chia m n p cho a phải chia hết cho a. – Nếu A có dạng hiệu m – n thì cần chỉ ra m n chia cho a có cùng số dư. Vận dụng tính chất chia hết để làm bài toán về tìm điều kiện để một biểu thức thỏa mãn điều kiện cho hết. Dạng 3 . Tìm số nguyên x thỏa mãn điều kiện về chia hết. Áp dụng tính chất: Nếu a + b chia hết cho c và a chia hết cho c thì b chia hết cho c.
Tài liệu dạy thêm - học thêm chuyên đề phép nhân số nguyên
Tài liệu gồm 16 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép nhân số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. NHÂN HAI SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI TẬP. Dạng 1 . Thực hiện phép tính. Áp dụng quy tắc nhân hai số nguyên cùng dấu, nhân hai số nguyên khác dấu. Dạng 2 . So sánh. So sánh với số 0: Tích hai số nguyên khác dấu luôn nhỏ hơn 0. Tích hai số nguyên cùng dấu luôn lớn hơn 0. So sánh một tích với một số: Để so sánh một tích với một số, ta áp dụng quy tắc nhân hai số nguyên cùng dấu, nhân hai số nguyên khác dấu, sau đó so sánh kết quả với số theo yêu cầu đề bài. So sánh hai biểu thức với nhau: Áp dụng quy tắc nhân hai số nguyên cùng dấu, nhân hai số nguyên khác dấu, các quy tắc dấu ngoặc, quy tắc chuyển vế sau đó so sánh hai kết quả với nhau. Dạng 3 . Tìm số nguyên chưa biết thỏa mãn điều kiện cho trước. – Áp dụng quy tắc chuyển vế đưa các số hạng chứa x về một bên, các số hạng không chứa x về một bên rồi sau đó tìm số chưa biết theo quy tắc nhân hai số nguyên khác dấu, quy tắc nhân hai số nguyên cùng dấu. – Vận dụng kiến thức. TÍNH CHẤT CỦA PHÉP NHÂN SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI TẬP. Dạng 1 . Thực hiện phép tính. Vận dụng các tính chất của phép nhân để tính chất giáo hoán, kết hợp và tính chất phân phối của phép nhân với phép cộng để tính toán được thuận lợi, dễ dàng. Dạng 2 . Tính giá trị của biểu thức. – Rút gọn biểu thức (nếu có thể). – Thay giá trị của chữ vào biểu thức rồi thực hiện phép tính. Dạng 3 . So sánh. C1: Xét dấu của các tích rồi so sánh. C2: Rút gọn biểu thức rồi so sánh kết quả.
Tài liệu dạy thêm - học thêm chuyên đề phép cộng và phép trừ số nguyên
Tài liệu gồm 13 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép cộng và phép trừ số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHÉP CỘNG SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép cộng. * Để thực hiện phép cộng các số nguyên, ta cần áp dụng quy tắc cộng hai số nguyên. * Tổng của một số với một số dương thì lớn hơn chính nó. * Tổng của một số với một số âm thì nhỏ hơn chính nó. * Tổng của một số với 0 thì bằng chính nó. * Tổng của hai số đối nhau bằng 0. Dạng 2 . Vận dụng tính chất của phép cộng các số nguyên tính tổng đại số. Muốn tính nhanh kết quả của tổng đại số, cần vận dụng các tính chất của phép cộng các số nguyên để thực hiện phép tính một cách hợp lí. Có thể cộng các số nguyên âm với nhau, các số nguyên dương với nhau, rồi tính tổng chung. Nếu trong tổng có hai số nguyên đối nhau thì kết hợp chúng với nhau. PHÉP TRỪ SỐ NGUYÊN & QUY TẮC DẤU NGOẶC PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép trừ. * Để thực hiện phép trừ hai số nguyên, ta biến đổi phép trừ thành phép cộng với số đối rồi thực hiện quy tắc cộng hai số nguyên đã biết. * Hai số a và a là hai số đối của nhau. Dạng 2 . Quy tắc dấu ngoặc. Để tính nhanh các tổng, ta áp dụng quy tắc dấu ngoặc để bỏ dấu ngoặc, nếu đằng trước ngoặc có dấu “+” khi bỏ ngoặc giữ nguyên dấu các số hạng bên trong ngoặc, nếu đằng trước ngoặc có dấu “–“ khi bỏ dấu ngoặc phải đổi dấu các số hạng trong ngoặc. Sau đó áp dụng các tính chất giao hoán, kết hợp trong tổng đại số. Chú ý kết hợp các cặp số hạng đối nhau hoặc các cặp số hạng có kết quả tròn chục, tròn trăm. Hoặc ta cần nhóm các số hạng vào trong ngoặc: Nếu đặt dấu “–” đằng trước dấu ngoặc thì phải đổi dấu các số hạng đó, còn nếu đặt dấu “+” đằng trước dấu ngoặc thì vẫn giữ nguyên dấu các số hạng đó. Dạng 3 . Toán tìm x. * Đối với dạng toán tìm x trong một đẳng thức, ta cần vận dụng quy tắc dấu ngoặc (nếu có) và một số tính chất để rút gọn mỗi vế của đẳng thức. Cuối cùng vận dụng quan hệ giữa các số có phép tính (nếu có) để tìm x.