Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Bình Tân TP HCM

Nội dung Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Bình Tân TP HCM Bản PDF - Nội dung bài viết Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 - 2025 phòng GD&ĐT Bình Tân TP HCM Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 - 2025 phòng GD&ĐT Bình Tân TP HCM Sytu xin gửi đến các thầy cô giáo và các bạn học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 - 2025 của phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh. Đề thi này đi kèm đáp án và lời giải chi tiết để giúp các bạn ôn tập hiệu quả. Bài thi gồm các câu hỏi thú vị như sau: + Trong một phòng thí nghiệm, đoàn tàu đồ chơi di chuyển theo hàm số s(t) = 6t - 9, với s là quãng đường đi được (mét) và t là thời gian (giây). Nếu trong thực tế đoàn tàu di chuyển 12 cm mất 2 giây và mỗi 10 giây nó đi được 52 cm. Hỏi sau 5 giây đoàn tàu di chuyển được bao nhiêu mét? Và cần bao nhiêu giây để đoàn tàu đi từ mẹ bé An đến chỗ bé, khi bé cách mẹ 2,5 mét? + Bạn Vy làm thêm ở tiệm café “Take away NT” và có hợp đồng lương tính theo ngày. Nếu bán đủ 50 ly café, Vy sẽ nhận được lương cơ bản 150,000 đồng. Mỗi ly bán vượt chỉ tiêu, bạn sẽ nhận thưởng 40% so với tiền lời một ly café. Biết hôm đầu tiên Vy làm thêm nhận được 222,000 đồng. Hỏi Vy đã bán bao nhiêu ly café, biết rằng lời một ly là 6,000 đồng? + Trái bóng Telstar có đường kính 22,3cm, với 32 múi da đen và trắng. Tính diện tích bề mặt của trái bóng. Và biết diện tích của mỗi múi da màu đen là 37 cm², mỗi múi da màu trắng là 55,9 cm², hỏi trái bóng có bao nhiêu múi da màu đen và màu trắng? Những câu hỏi này sẽ giúp các bạn luyện tập và nắm vững kiến thức Toán cần thiết cho kỳ thi tuyển sinh sắp tới. File WORD đã được chuẩn bị sẵn sàng cho quý thầy cô giáo để sử dụng trong việc giảng dạy và ôn tập cho học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thanh Hóa gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình: nx^2 + x – 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. [ads] + Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. 1. Chứng minh ONFP là tứ giác nội tiếp. 2. Chứng minh: OF vuông góc với MQ và PM.PF = PO.PQ. 3. Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Lời giải của thầy Nguyễn Chí Dũng. Trích một số bài toán trong đề: + Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax với nửa đường tròn đó (Ax nằm trên cùng nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc CAx cắt nửa đường tròn tại D. Kéo dài AD và BC cắt nhau tại E. Kẻ EH vuông góc với Ax tại H a. Chứng minh tứ giác AHEC nội tiếp. b. Chứng minh hai góc ABD và DBC bằng nhau. c. Chứng minh tam giác ABE cân. d. Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi. [ads] + Ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận là ngọn tháp thắp đèn gần bờ biển dùng để định hướng cho tàu thuyền giao thông trong khu vực vào ban đêm. Đây là ngọn Hải đăng được xem là cổ xưa và cao nhất Việt Nam, chiều cao của ngọn đèn so với mặt nước biển là 65m. Hỏi: a. Một người quan sát đứng tại vị trí đèn của Hải đăng nhìn xa tối đa bao nhiêu km trên mặt biển? b. Cách bao xa thì một người quan sát đứng ở trên tàu bắt đầu trông thấy ngọn đèn này, biết rằng mắt người quan sát đứng ở trên tàu có độ cao 5m so với mặt nước biển? (Cho biết bán kính Trái Đất gần bằng 6400km và điều kiện quan sát trên biển là không bị che khuất).