Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Tài Chung

Tài liệu gồm 60 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tóm tắt lý thuyết, dạng toán, phương pháp giải, bài tập trắc nghiệm có đáp án và bài tập tự luận tự luyện chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 1, ôn thi tốt nghiệp THPT môn Toán. Khái quát nội dung chuyên đề hàm số lượng giác và phương trình lượng giác – Nguyễn Tài Chung: BÀI 1 . CÁC HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác định của hàm số. Dạng 2. Xét tính chẵn, lẻ của hàm số lượng giác y = f (x). Dạng 3. Xét chiều biến thiên của hàm số lượng giác. Dạng 4. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. Dạng 5. Phương pháp lượng giác hoá. Dạng 6. Xét tính tuần hoàn của hàm số lượng giác. Dạng 7. Một số bài toán khác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng 8. Phương trình lượng giác cơ bản. Dạng 9. Giải phương trình lượng giác thoả mãn điều kiện cho trước. Dạng 10. Rèn luyện kĩ năng biến đổi thành tích. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI, BẬC BA ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC. Phương trình bậc hai, bậc ba đối với một hàm số lượng giác là những phương trình dạng: at2 + bt + c = 0, at3 + bt2 + ct + d = 0, với t là một hàm số lượng giác nào đó. BÀI 4 . PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SIN X VÀ COS X. BÀI 5 . PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI ĐỐI VỚI SIN X VÀ COS X. BÀI 6 . SỬ DỤNG CÁC CÔNG THỨC BIẾN ĐỔI ĐỂ GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC. Việc sử dụng các công thức biến đổi nhằm đưa phương trình đã cho về phương trình tích hoặc các phương trình đã biết cách giải. 1. Công thức biến đổi tổng thành tích. 2. Công thức biến đổi tích thành tổng. 3. Công thức hạ bậc, nâng cung. [ads] BÀI 7 . PHƯƠNG TRÌNH ĐƯA VỀ DẠNG TÍCH. Trong các đề thi tuyển sinh vào Đại học, Cao đẳng những năm gần đây, đa số các bài toán về giải phương trình lượng giác đều rơi vào một trong hai dạng: Phương trình đưa về dạng tích hoặc phương trình chứa ẩn ở mẫu. Để đưa phương trình đã cho về phương trình tích điều quan trọng nhất vẫn là làm sao để phát hiện ra nhân tử chung nhanh nhất. BÀI 8 . MỘT SỐ PHÉP ĐẶT ẨN PHỤ THÔNG DỤNG. 1. Phép đặt ẩn phụ u = sin x + cos x, với điều kiện |u| ≤ √2. 2. Phép đặt ẩn phụ u = sin x cos x = 1/2sin 2x (khi đó |u| ≤ 1/2). 3. Phép đặt ẩn phụ t = tan x + cot x. 4. Phép đặt ẩn phụ t = tan x/2. BÀI 9 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU VÀ PHƯƠNG PHÁP KẾT HỢP NGHIỆM. Với loại phương trình này khi giải nếu không cẩn thận rất dễ dẫn đến lấy thừa hoặc thiếu nghiệm. Điều quan trọng đầu tiên để giải dạng này là đặt điều kiện và kiểm tra điều kiện xác định. Thông thường ta hay dùng đường tròn lượng giác hoặc phương trình nghiệm nguyên để loại nghiệm. Một phương pháp rất hiệu quả là kết hợp điều kiện, loại nghiệm ngay trong từng bước biến đổi. BÀI 10 . MỘT SỐ BÀI TOÁN SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ. BÀI 11 . SỬ DỤNG LƯỢNG GIÁC ĐỂ GIẢI PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH ĐẠI SỐ. Lợi thế của phương pháp lượng giác hóa là đưa phương trình ban đầu về một phương trình lượng giác cơ bản đã biết cách giải như phương trình đẳng cấp, đối xứng … và điều kiện nhận hoặc loại nghiệm cũng dễ dàng hơn rất nhiều. Vì lượng giác là hàm tuần hoàn nên ta chú ý đặt điều kiện các biểu thức lượng giác sao cho khi khai căn không có dấu trị tuyệt đối, có nghĩa là luôn dương. BÀI 12 . BẤT PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Trong bài này ta sẽ giải các bất phương trình lượng giác cơ bản, đó là sin x ≥ a, cos x ≥ a, tan x ≥ a, cot x ≥ a, sin x ≤ a, cos x ≤ a, tan x ≤ a, cot x ≤ a (trong đó a là một hằng số thực).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lượng giác Toán 11 Kết Nối Tri Thức Với Cuộc Sống
Tài liệu gồm 55 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, trình bày lý thuyết, một số dạng toán thường gặp và bài tập trắc nghiệm chuyên đề hàm số lượng giác trong chương trình môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS). A. LÝ THUYẾT. B. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP. Dạng 1. Tìm tập xác định của hàm số lượng giác. Dạng 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. Dạng 3. Xét tính chẵn lẻ của hàm số lượng giác. Dạng 4. Xác định tính tuần hoàn của các hàm số lượng giác.
Chuyên đề hàm số lượng giác và phương trình lượng giác Toán 11 CTST
Tài liệu gồm 356 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . GÓC LƯỢNG GIÁC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng. Đổi đơn vị đo. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Mối liên hệ giữa radian và độ. + Dạng 3. Đường tròn lượng giác và các bài toán liên quan. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính giá trị lượng giác của một góc lượng giác hoặc một biểu thức. + Dạng 2. Giá trị lượng giác của các góc có liên quan đặc biệt. + Dạng 3. Rút gọn biểu thức lượng giác. Đẳng thức lượng giác. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Xét dấu của các giá trị lượng giác. + Dạng 2. Tính giá trị lượng giác của một góc lượng giác. + Dạng 3. Giá trị lượng giác của các góc có liên quan đặc biệt. + Dạng 4. Rút gọn biểu thức lượng giác. Đẳng thức lượng giác. + Dạng 5. Giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. BÀI 3 . CÔNG THỨC LƯỢNG GIÁC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Áp dụng công thức cộng. + Dạng 2. Áp dụng công thức nhân đôi – hạ bậc. + Dạng 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích. + Dạng 4. Kết hợp các công thức lượng giác. + Dạng 5. Nhận dạng tam giác. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của các hàm số lượng giác cơ bản. + Dạng 3. Tính tuần hoàn của hàm số. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tập xác định. + Dạng 2. Tính chẵn lẻ. + Dạng 3. Tập giá trị – giá trị lớn nhất và giá trị nhỏ nhất. BÀI 5 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương trình sin x = m. + Dạng 2. Phương trình cos x = m. + Dạng 3. Phương trình tan x = m và cot x = m. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Phương trình sin x = m. + Dạng 2. Phương trình cos x = m. + Dạng 3. Phương trình tan x = m. + Dạng 4. Phương trình cot x = m. + Dạng 5. Một số bài toán tổng hợp.
Toàn tập hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác, kết hợp ba bộ sách giáo khoa Toán 11 chương trình mới: Cánh Diều, Chân Trời Sáng Tạo, Kết Nối Tri Thức Với Cuộc Sống. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM LƯỢNG GIÁC THPT (TOÀN TẬP): + Cơ bản góc và cung lượng giác (phần 1 – phần 6). + Vận dụng cao góc và cung lượng giác (phần 1 – phần 6). + Cơ bản công thức lượng giác (phần 1 – phần 6). + Cơ bản hàm số lượng giác (phần 1 – phần 6). + Vận dụng cao công thức lượng giác, hàm số lượng giác (phần 1 – phần 8). + Cơ bản phương trình lượng giác (phần 1 – phần 6). + Vận dụng cao phương trình lượng giác và ứng dụng (phần 1 – phần 8). + Cơ bản lượng giác tổng hợp (phần 1 – phần 6). + Vận dụng cao lượng giác tổng hợp (phần 1 – phần 8).
Các dạng toán hàm số lượng giác và phương trình lượng giác Toán 11 Cánh Diều
Tài liệu gồm 153 trang, bao gồm lý thuyết cần nhớ, phân loại và phương pháp giải toán, bài tập tự luyện và bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Cánh Diều, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. Bài 1 . GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 4. + Dạng toán 1. Đổi đơn vị giữa độ và rađian. Độ dài cung tròn 4. + Dạng toán 2. Số đo của góc lượng giác. Hệ thức Chasles 5. + Dạng toán 3. Biểu diễn góc lượng giác trên đường tròn lượng giác 7. + Dạng toán 4. Tính các giá trị lượng giác của một góc lượng giác 8. + Dạng toán 5. Tính giá trị của biểu thức M liên quan đến các giá trị lượng giác 11. + Dạng toán 6. Rút gọn biểu thức, chứng minh đẳng thức 12. + Dạng toán 7. Vận dụng thực tiễn 14. C BÀI TẬP TỰ LUYỆN 15. D BÀI TẬP TRẮC NGHIỆM 25. Bài 2 . CÁC PHÉP BIẾN ĐỔI LƯỢNG GIÁC 29. A LÝ THUYẾT CẦN NHỚ 29. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 30. + Dạng toán 1. Sử dụng công thức cộng, công thức nhân đôi 30. + Dạng toán 2. Sử dụng công thức biến đổi tích thành tổng 31. + Dạng toán 3. Sử dụng công thức biến đổi tổng thành tích 32. + Dạng toán 4. Các bài toán chứng minh, rút gọn 34. + Dạng toán 5. Vận dụng thực tiễn 37. C BÀI TẬP TỰ LUYỆN 38. D BÀI TẬP TRẮC NGHIỆM 44. Bài 3 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 47. A KIẾN THỨC CẦN NHỚ 47. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 48. + Dạng toán 1. Tìm tập xác định của hàm số lượng giác 48. + Dạng toán 2. Tính chẵn lẻ của hàm số 51. + Dạng toán 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 52. C BÀI TẬP TỰ LUYỆN 55. D BÀI TẬP TRẮC NGHIỆM 57. Bài 4 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 59. A KIẾN THỨC CẦN NHỚ 59. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 61. + Dạng toán 1. Giải các phương trình lượng giác cơ bản 61. + Dạng toán 2. Giải các phương trình lượng giác dạng mở rộng 64. + Dạng toán 3. Vận dụng thực tiễn 65. C BÀI TẬP TỰ LUYỆN 66. D BÀI TẬP TRẮC NGHIỆM 72.