Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác DEF vuông cân tại D. Gọi G là trung điểm của EF. a) Chứng minh EDG = DFG. b) Lấy điểm H thuộc đoạn thẳng EG (H khác E và G). Kẻ các đường thẳng EI, FK lần lượt vuông góc với đường thẳng DH tại I và K. Chứng minh EI = DK và tam giác GIK vuông cân. + Cho tam giác MNP có NMP < 900. Vẽ ra phía ngoài tam giác MNP hai đoạn thẳng MQ vuông góc và bằng MN, MR vuông góc và bằng MP. Gọi I là trung điểm của NP. Chứng minh MI = 1/2.QR.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và 0 AMC 135. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Bắc Giang
Ngày 12 tháng 03 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lục Ngạn - Bắc Giang
Thứ Năm ngày 18 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lục Ngạn – Bắc Giang (bảng B) gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 120 phút.
Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Sầm Sơn - Thanh Hóa
Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa : + Số M được chia thành ba phần tỉ lệ với nhau như 0,25 : 0,375 : 0,1(3). Tìm số M biết rằng tổng các bình phương của ba phần đó bằng 4564. + Tìm các giá trị nguyên của x để biểu thức N = 2 3 4 1 2 x x x có giá trị nguyên. + Cho tam giác ABC có 0 ABC ACB 30. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Lấy điểm E thuộc cạnh CD sao cho 0 DBE = 30. Gọi P là điểm trên cạnh BC sao cho BP = BD. Vẽ PQ vuông góc với CD. a) Chứng minh rằng tam giác AEB là tam giác vuông. b) Chứng minh rằng 2 2 2 1 1 1 BE BC BD. c) Chứng minh rằng EB = EQ. d) So sánh hai đoạn thẳng AE và AQ.