Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Gia Lai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Gia Lai. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Hùng Vương – Gia Lai : + Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn: x12 + x22 = 16. + Bạn Tuấn lập kế hoạch tiết kiệm tiền để mua một cái laptop phục vụ cho việc học tập như sau: Hằng tháng, Tuấn tiết kiệm các khoản chi tiêu cá nhân để dành ra một triệu đồng. Vào ngày 01 hằng tháng Tuấn gửi vào tài khoản tiết kiệm của mình một triệu đồng và bắt đầu gửi vào ngày 01 tháng 7 năm 2023 để hưởng lãi suất 0,5%/tháng theo hình thức lãi kép (nghĩa là tiền lãi của tháng trước được cộng vào vốn để tính lãi cho tháng sau) và duy trì việc này liên tục trong 3 năm. (Biết tài khoản ban đầu của Tuấn là 0 đồng và hàng tháng Tuấn không rút vốn, lãi). a) Tính số tiền tiết kiệm Tuấn có được trong tài khoản tính đến ngày 02/8/2023. b) Tính đến ngày 02/10/2023 thì số tiền trong tài khoản tiết kiệm của Tuấn là bao nhiêu (làm tròn kết quả đến hàng đơn vị)? c) Hãy đề xuất công thức tính tổng số tiền trong tài khoản tiết kiệm sau kỳ gửi tháng thứ n (n là số tự nhiên, n ≥ 3). Sử dụng công thức đó để tính số tiền Tuấn có được trong tài khoản tính đến ngày 02/7/2026. + Từ điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB (A, B là tiếp điểm), cát tuyến MCD không đi qua tâm, MD > MC. a) Chứng minh rằng MA2 = MC.MD. b) Gọi H là giao điểm của MO và AB. Chứng minh rằng tứ giác CHOD nội tiếp. c) Tìm vị trí của điểm D trên đường tròn (O) để tam giác MAD có diện tích lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2017 - 2018 trường Archimedes Academy - Hà Nội lần 6
Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 gồm 5 bài toán tự luận, thí sinh làm bài trong khoảng thời gian 120 phút, nội dung các bài toán trong đề gồm các chủ đề sau: tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi được diễn ra vào ngày 21 tháng 4 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán 2017 – 2018 : + Một ô tô đi từ A đến B cách nhau 260km, sau khi ô tô đi được 120km với vận tốc dự định thì tăng vận tốc thêm 10km/h trên quãng đường còn lại. Tính vận tốc dự định của ô tô, biết xe đến B sớm hơn thời gian dự định 20 phút. [ads] + Cho hệ phương trình x + 2y = 3, x + my = 1 (m là tham số). Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x, y) sao cho x, y là các số nguyên. + Cho parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (m là tham số) a) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú – Hà Nội được biên soạn nhằm giúp các em nắm được cấu trúc, độ khó của đề thi và làm quen với hình thức thi để có sự chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, không tính thời gian phát đề, đề thi có lời giải chi tiết và thang điểm.
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long - Hà Nội
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút( không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 25 tháng 02 năm 2018, đề thi thử có lời giải chi tiết . Trích dẫn đề thi thử tuyển sinh vào lớp 10 môn Toán : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một khoảng thời gian đã định. Nếu xe chạy với vận tốc 35 km/h thì đến B chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến B sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định đi lúc ban đầu. + Cho các số thực không âm x, y, z thỏa mãn: x ≤ 1, y ≤ 1, z ≤ 1 và x + y + z = 3/2. Tím giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x^2 + y^2 + z^2. [ads] + Cho đường tròn tâm O, bán kính R . Điểm A thuộc đường tròn, BC là một đường kính (A ≠ B, A ≠ C). Vẽ AH vuông góc với BC tại H. Gọi E, M lần lượt là trung điểm của AB, AH và P là giao điểm của OE với tiếp tuyến tại A của đường tròn (O, R). 1) Chứng minh rằng: AB^2 = BH.BC. 2) Chứng minh: PB là tiếp tuyến của đường tròn (O). 3) Chứng minh ba điểm P, M, C thẳng hàng. 4) Gọi Q là giao điểm của đường thẳng PA với tiếp tuyến tại C của đường tròn (O). Khi A thay đổi trên đường tròn (O), tìm giá trị nhỏ nhất của tổng OP + OQ.
Đề thi thử vào lớp 10 môn Toán năm học 2018 - 2019 trường Lương Thế Vinh - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội gồm trang với 5 bài toán tự luận, kỳ thi diễn ra vào ngày 14/01/2018. Cấu trúc đề thi thử vào lớp 10 môn Toán : Câu 1. Bài toán về các biểu thức đại số Câu 2. Giải toán bằng cách lập phương trình và hệ phương trình Câu 3. Gồm 2 ý: + Ý 1. Giải hệ phương trình + Ý 2. Giải toán hàm số bậc nhất và đồ thị Câu 4. Bài toán hình học phẳng về đường tròn Câu 5. Giá trị lớn nhất và giá trị nhỏ nhất