Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Quận 9 TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Quận 9 TP HCM Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 8 năm 2019 – 2020 phòng GD&ĐT Quận 9, TP Hồ Chí Minh Đề thi học kỳ 1 Toán lớp 8 năm 2019 – 2020 phòng GD&ĐT Quận 9, TP Hồ Chí Minh Trong đề thi học kỳ 1 Toán lớp 8 năm 2019 – 2020 của phòng GD&ĐT Quận 9, TP Hồ Chí Minh, có nhiều bài tập thú vị và hấp dẫn. Dưới đây là một số bài tập đáng chú ý trong đề thi: Bài 1: Một người thợ làm bánh thiết kế một chiếc bánh cưới có 3 tầng hình tròn. Tầng đáy có đường kính CH = 40cm. Tầng thứ 1 có đường kính EF nhỏ hơn đường kính tầng đáy CH là 20cm. Hãy tính độ dài đường kính DG của tầng 2. Bài 2: Kết thúc học kỳ I, nhóm gồm 10 bạn học sinh tổ chức đi du lịch. Sau khi đã hợp đồng xong, vào giờ chót có 2 bạn bận việc đột xuất không đi được. Mỗi bạn còn lại phải trả thêm 50,000 đồng so với dự kiến ban đầu. Hỏi tổng chi phí chuyến đi là bao nhiêu tiền? Bài 3: Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh tứ giác ABDC là hình chữ nhật. Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác BEDC là hình bình hành. EM cắt BD tại K. Chứng minh: EK = 2KM. Đây là một số bài tập khó, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các em học sinh. Việc lời giải chi tiết và hướng dẫn chấm điểm cũng được cung cấp để giúp các em hiểu rõ hơn về các vấn đề cần giải quyết trong từng bài tập. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi học kỳ 1!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 8 năm 2018 - 2019 phòng GDĐT Tây Hồ - Hà Nội
Đề kiểm tra học kỳ 1 Toán 8 năm học 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội gồm 1 trang được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 90 phút, không tính thời gian giám thì phát đề, đây là kỳ thi nhằm giúp giáo viên bộ môn Toán cũng như nhà trường nắm được chất lượng học tập môn Toán của học sinh khối lớp 8 trong suốt giai đoạn học kỳ 1 năm học 2018 – 2019 vừa qua.
20 đề ôn tập kiểm tra chất lượng học kỳ 1 Toán 8 phòng GD và ĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô cùng các em tuyển tập 20 đề ôn tập kiểm tra chất lượng học kỳ 1 Toán 8 phòng GD và ĐT thành phố Thái Bình, tài liệu gồm 20 trang được chia sẻ bởi thầy Lương Tuấn Đức, các đề được biên soạn theo hình thức tự luận, mỗi đề gồm 5 bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề), bộ đề nhằm giúp các em học sinh lớp 8 tự rèn luyện để chuẩn bị cho kỳ thi học kỳ 1 Toán 8 sắp tới. Trích dẫn tài liệu 20 đề ôn tập kiểm tra chất lượng học kỳ 1 Toán 8 phòng GD và ĐT thành phố Thái Bình : + Xét các khẳng định sau: (1) Tổng các góc một đa giác n cạnh trừ đi góc A của nó bằng 570 độ thì n = 6. (2) Không tồn tại đa giác có số đường chéo gấp đôi số cạnh. (3) Đa thức x^10 – 10x + 9 chia hết cho (x – 1)^2. Số lượng khẳng định đúng là? + Cho tam giác ABC cân tại A, từ một điểm D trên đáy BC vẽ đường thẳng vuông góc với BC, cắt các đường thẳng AB, AC theo thứ tự tại E, F. Vẽ các hình chữ nhật BDEH tâm I và CDFK tâm O. 1. Chứng minh AIDO là hình bình hành. 2. Chứng minh AHIO là hình bình hành. 3. Chứng minh H đối xứng với K qua A. + Khẳng định nào sau đây sai? A. Hình vuông có bốn trục đối xứng và một tâm đối xứng. B. Hình thoi có hai trục đối xứng và không có tâm đối xứng. C. Hình thang cân có hai góc kề một đáy bằng nhau và hai đường chéo bằng nhau. D. Công thức diện tích hình bình hành là S = a.h (h là chiều cao ứng với cạnh a).
Đề kiểm tra học kỳ 1 Toán 8 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 06 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra học kỳ 1 Toán 8 : Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M xuống các cạnh AB và AC. a) Tứ giác ADME là hình gì? vì sao? b) Điểm M ở vị trí nào trên cạnh BC để tứ giác ADME là hình vuông? c) Gọi I là trung điểm đoạn thẳng BM và K là trung điểm đoạn thẳng CM và tứ giác DEKI là hình bình hành. Chứng minh rằng DE là đường trung bình tam giác ABC. Giải: a) Xét tứ giác ADME có: Góc DAE = 90 độ (vì tam giác ABC vuông tại A) Góc ADM = 90 độ (Vì MD ⊥ AB tại D) Góc AEM = 90 độ (Vì ME ⊥ AC tại E) Suy ra tứ giác ADME là hình chữ nhật. b) Để tứ giác ADME là hình vuông thì hình chữ nhật ADME có AM là tia phân giác của góc DAE, suy ra điểm M là giao điểm của đường phân giác góc BAC với cạnh BC của tam giác ABC. [ads] c) Theo giả thiết tứ giác DEKI là hình bình hành nên DI = EK, mà DI = 1/2.BM, EK = 1/2.CM (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, áp dụng vào tam giác BDM vuông tại D, tam giác CEM vuông tại E) Do đó: BM = CM ⇒ M là trung điểm của BC (1) Lại có MD ⊥ AB và AC ⊥ AB nên MD // AC (2) Từ (1) và (2) suy ra D là trung điểm cạnh AB (*) Chứng minh tương tự ta có E là trung điểm cạnh AC (**) Từ (*) và (**) suy ra DE là đường trung bình tam giác ABC. (đpcm)