Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng của nguyên lý Dirichlet trong giải toán THCS

Tài liệu gồm 94 trang trình bày những ứng dụng của nguyên lý Dirichlet trong việc giải các bài toán về số học, tổ hợp, chứng minh bất đẳng thức … giúp bồi dưỡng học sinh giỏi môn Toán cấp THCS. Khái quát nội dung tài liệu ứng dụng của nguyên lý Dirichlet trong giải toán THCS: CHỦ ĐỀ 1 : CÁC BÀI TOÁN ỨNG DỤNG NGUYÊN LÝ DIRICHLET TRONG CÁC BÀI TOÁN TỔ HỢP, SỐ HỌC VÀ HÌNH HỌC. Lý thuyết : Nguyên lí Dirichlet, Nguyên lý Dirichlet cơ bản, Nguyên lý Dirichlet tổng quát, Nguyên lí Dirichlet mở rộng, Nguyên lí Dirichlet dạng tập hợp. Áp dụng : + Nguyên lí Dirichlet là một công cụ hiệu quả dùng để chứng minh nhiều kết quả sâu sắc của toán học. + Nguyên lí Dirichlet cũng được áp dụng cho các bài toán của hình học. + Để sử dụng nguyên lý Dirichlet ta phải làm xuất hiện tình huống nhốt “thỏ” vào “chuồng” và thoả mãn các điều kiện: Số “thỏ” phải nhiều hơn số chuồng, “thỏ” phải được nhốt hết vào các “chuồng”, nhưng không bắt buộc chuồng nào cũng phải có thỏ. + Thường thì phương pháp Dirichlet được áp dụng kèm theo phương pháp phản chứng. Ngoài ra nó còn có thể áp dụng với các nguyên lý khác. [ads] CHỦ ĐỀ 2 : ỨNG DỤNG NGUYÊN LÍ DIRICHLET TRONG CHỨNG MINH BẤT ĐẲNG THỨC. + Việc ứng dụng nguyên lí Dirichlet giúp chúng ta chứng minh được một số bài toán bất đẳng thức một cách rất gọn gàng và độc đáo. + Từ nguyên lí Dirichlet có một mệnh đề có ý nghĩa hết sức quan trọng: Trong 3 số thực bất kì a, b, c bao giờ cũng tìm được hai số cùng dấu. Đây là một mệnh đề rất quan trọng, bởi khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán) thì ta có thể áp dụng mệnh đề trên để chứng minh bất đẳng thức.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu chuyên đề này bao gồm 09 trang, được thiết kế dành cho học sinh lớp 9 chuẩn bị cho kì thi tuyển sinh vào lớp 10. Nội dung tài liệu tập trung vào phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình bậc nhất hai ẩn, kèm theo đáp án và lời giải chi tiết. Các bài tập được lựa chọn từ các nguồn đáng tin cậy, giúp học sinh hiểu rõ về kiến thức và rèn luyện kỹ năng giải bài toán hiệu quả.
Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào
Nội dung Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Tài liệu này có tổng cộng 31 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề về hàm số bậc nhất và hàm số bậc hai. Nội dung của tài liệu bao gồm các bài tập được chọn lọc từ các đề thi tuyển sinh vào lớp 10 môn Toán, kèm theo đáp án và lời giải chi tiết. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.
Chuyên đề biến đổi đại số ôn thi vào
Nội dung Chuyên đề biến đổi đại số ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu này bao gồm 31 trang, cung cấp hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán được lựa chọn từ các nguồn đáng tin cậy, đảm bảo chất lượng và phong phú cho việc ôn tập của học sinh.
Một số bài toán về đường cố định và điểm cố định
Nội dung Một số bài toán về đường cố định và điểm cố định Bản PDF - Nội dung bài viết Một số bài toán về đường cố định và điểm cố địnhKiến thức cần nhớCác bước giải bài toán về đường cố định và điểm cố định Một số bài toán về đường cố định và điểm cố định Trong tài liệu này, bạn sẽ được giới thiệu với 71 trang tập hợp một số bài toán về đường cố định và điểm cố định, đều hay và khó, với đáp án và lời giải chi tiết. Đây là công cụ hữu ích cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi vào lớp 10 môn Toán cũng như cho các kỳ thi học sinh giỏi môn Toán trình độ trung học cơ sở. Kiến thức cần nhớ Để giải các bài toán về đường cố định và điểm cố định, bạn cần có kĩ năng phân tích bài toán và suy nghĩ sâu để tìm ra lời giải. Một trong những bước quan trọng là dự đoán yếu tố cố định, có thể thực hiện bằng cách giải bài toán trong trường hợp đặc biệt, xét các đường đặc biệt của một họ đường, hoặc dựa vào tính đối xứng, tính độc lập của các đối tượng. Các bước giải bài toán về đường cố định và điểm cố định Tìm hiểu bài toán: Xác định yếu tố cố định, yếu tố chuyển động, yếu tố không đổi và quan hệ không đổi Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt để dự đoán yếu tố cố định Tìm tòi hướng giải: Tìm mối quan hệ giữa yếu tố cố định với các yếu tố khác Để hiểu rõ hơn về cách giải bài toán về đường cố định và điểm cố định, tài liệu cung cấp các ví dụ minh họa và bài tập tự luyện, kèm theo hướng dẫn giải chi tiết.