Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GDĐT Bình Tân - TP HCM

Ngày 11 tháng 12 năm 2019, phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh tổ chức kiểm tra học kỳ 1 môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Bình Tân – TP HCM gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Bình Tân – TP HCM : + Ngọc và Hân có may một số áo, Ngọc dùng các nút loại 2 lỗ, Hân dùng các nút loại 4 lỗ để may áo. Ngọc có nhiều hơn Hân 7 nút áo. Tổng số lỗ của tất cả nút áo của 2 bạn là 62 lỗ. Hỏi mỗi người đã dùng bao nhiêu nút áo? + Để chuẩn bị khai giảng năm học mới ở trường, bác bảo vệ kiểm tra cột cờ thì phát hiện dây kéo cờ bị hỏng nên phải thay dây mới. Để mua dây kéo cờ vừa đủ thì bác cần biết chiều cao của cột cờ, vì thế bác đã nhờ bạn Dũng là học sinh lớp 9 giúp bác. Bạn Dũng cùng với một nhóm bạn đã đo chiều cao cột cờ bằng cách dùng giác kế ngắm đỉnh của cột cờ, giác kế chỉ góc 36 độ 56 phút, chân giác kế đặt cách cột cờ là 9,6 m và đặt trên giá đỡ cao 1m. Tính chiều cao cột cờ? (kết quả làm tròn đến mét). [ads] + Từ trên tháp quan sát của một ngọn hải đăng cao 28m, người ta nhìn thấy một chiếc thuyền cứu hộ với góc hạ 20°. Tính khoảng cách từ chân tháp đến thuyền? (kết quả làm tròn đến mét). + Trong kỳ thi học sinh giỏi cấp Thành phố năm học 2018 – 2019, Quận Bình Tân có 123 học sinh tham dự, Phòng Giáo dục và Đào Tạo đã tổ chức đưa đón học sinh dự thi bằng 3 xe ôtô. Biết rằng xe thứ I chở ít hơn xe thứ III là 12 học sinh, xe thứ II chở ít hơn xe thứ I là 7 học sinh. Hỏi mỗi xe chở bao nhiêu học sinh. Biết rằng có 13 học sinh do phụ huynh chở đi trong kỳ thi này. + Từ điểm A nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). a) Chứng minh: Bốn điểm O, B, A, C cùng thuộc 1 đường tròn và BC vuông góc với OA tại H. b) Kẻ đường kính BD của đường tròn (O). Qua C vẽ đường thẳng vuông góc với AB, đường thẳng này cắt OA tại E. Chứng minh: CD // OA và tứ giác OBEC là hình thoi. c) Qua E vẽ đường thẳng a bất kỳ cắt đoạn thẳng AC. Lần lượt vẽ OM, DN, CP vuông góc với đường thẳng a tại M, N, P. Chứng minh: DN = OM + CP.

Nguồn: toanmath.com

Đọc Sách

Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Hải Dương : + Cho hàm số bậc nhất: y = (m – 3)x + 2m – 5 (m là tham số và m khác 3) có đồ thị (d) a) Tìm điều kiện của m để hàm số đồng biến trên R. b) Tìm giá trị của m để đường thẳng (d) đi qua điểm A (-1;4). c) Tìm giá trị của m để hai đường thẳng (d) và (d’): y = 2x + 4 cắt nhau tại điểm có hoàng độ bằng -3/4. + Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Tia Ax nằm giữa AB và AO cắt đường tròn (O;R) tại hai điểm C và D (C nằm giữa A và D). Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H. a) Tính OH.OA theo R. b) Cho ABC = ADB. Chứng minh AC.AD = AH.AO và CHO + CDO = 180° c) Qua C kẻ tiếp tuyến thứ hai với đường tròn (O) cắt OM tại E. Chứng minh ba điểm E, H, B thẳng hàng. + Cho a, b, c dương thỏa mãn 6a + 3b + 2c = abc. Tìm giá trị lớn nhất của biểu thức T.
Đề học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi được biên soạn theo cấu trúc 30% trắc nghiệm + 70% tự luận, thời gian làm bài 60 phút; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 12 năm 2022. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, BC = 15 cm. Khi đó độ dài AH bằng? + Cho hàm số y = (m – 2)x + 11 (*) a) Tìm m để hàm số (*) đồng biến trên R. b) Tìm m để đồ thị hàm số (*) và đường thẳng y = x + m2 + 2 cắt nhau tại một điểm trên trục tung. + Cho đường tròn (O;3cm) và một điểm M sao cho OM = 5cm. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là hai tiếp điểm). Gọi I là giao điểm của OM và AB. a) Tính độ dài đoạn AM và giá trị tan của góc AMO. b) Chứng minh OM vuông góc AB tại I. c) Từ B kẻ đường kính BC của đường tròn (O), đường thẳng MC cắt đường tròn (O) tại D (D khác C). Chứng minh: MDO đồng dạng với MIC.
Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bến Cát - Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Bến Cát, tỉnh Bình Dương; đề thi dành cho học sinh các lớp 9 THCS Đại trà – chương trình Toán 9 chuẩn. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bến Cát – Bình Dương : + Cho hàm số y = − x có đồ thị (d1) và hàm số y = 1/2x + 1 có đồ thị (d2) a) Vẽ (d1), (d2) trên cùng mặt phẳng tọa độ Oxy b) Gọi A là giao điểm của hai đường thẳng (d1) và (d2). Tìm tọa độ giao điểm A bằng phép tính. c) Tìm m để đường thẳng y = (2m − 1)x + 2 đi qua điểm A. + Cho đường tròn (O;R) và điểm M thuộc đường tròn (O). Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại C và D và cắt OM tại H. a) Chứng minh H là trung điểm của CD. b) Với điểm K ở ngoài đường tròn (O;R). Vẽ hai tiếp tuyến tại KC, KD của (O) (C và D là các tiếp điểm). Chứng minh tam giác OMC đều. Tính OK theo R. c) Đường thẳng vuông góc với OC tại O cắt DK tại N. Chứng minh tam giác NKO là tam giác cân.
Đề học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bù Đăng - Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Bù Đăng, tỉnh Bình Phước. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bù Đăng – Bình Phước : + Cho hàm số y = 2x − 1 có đồ thị là đường thẳng (d) và hàm số y = -x + 5 có đồ thị là đường thẳng (d’). a) Vẽ đồ thị hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy. b) Tìm tọa độ giao điểm của hai đồ thị (d) và (d’) bằng phép tính. + Cho tam giác ABC vuông tại A có cạnh AB = 6cm, C = 60°. Hãy tính độ dài các cạnh AC, BC, đường cao AH và đường trung tuyến AM của tam giác ABC. + Cho nửa đường tròn (O;R) đường kính AB. Gọi Ax và By là hai tiếp tuyến với nửa đường tròn (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A, B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự tại C, D. a) Chứng minh: CAM cân. b) Chứng minh: COD = 90. c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. d) Giả sử AM = R, gọi I là giao điểm của AM và OC. Tính độ dài IC theo R.