Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề phép chia hết

Nội dung Tài liệu dạy thêm học thêm chuyên đề phép chia hết Bản PDF Sản phẩm "Tài liệu dạy thêm học thêm chuyên đề phép chia hết" là một tài liệu hỗ trợ cho giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu gồm tổng cộng 28 trang, bao gồm phần tóm tắt lý thuyết và hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép chia hết.

Phần I của tài liệu là phần tóm tắt lý thuyết, tổng hợp những kiến thức cần biết về phép chia hết. Nội dung của phần này giúp các giáo viên và học sinh nắm vững các khái niệm và tính chất liên quan đến phép chia hết.

Phần II của tài liệu là phần giải các dạng bài tập chuyên đề phép chia hết. Tài liệu đưa ra các dạng bài tập có thể gặp phải trong quá trình học và cung cấp hướng dẫn chi tiết về cách giải quyết từng dạng bài tập đó. Các dạng bài tập được chia thành nhiều phần khác nhau, như tính chất chia hết của một tổng, hiệu, tích, luỹ thừa; dấu hiệu chia hết cho 2, 5; dấu hiệu chia hết cho 3, 9; số nguyên tố, hợp số; phân tích một số ra thừa số nguyên tố.

Tài liệu này được thiết kế dưới định dạng file Word để dễ dàng sử dụng và in ấn. Đối tượng sử dụng của tài liệu là giáo viên và học sinh lớp 6, nhằm giúp họ nắm vững kiến thức về phép chia hết và cải thiện kỹ năng giải các bài tập chuyên đề trong môn Toán.

Đặc điểm nổi bật của tài liệu này là việc sắp xếp rõ ràng và chi tiết từ các phần tóm tắt lý thuyết, giải các dạng bài tập và phần cung cấp file Word để thuận tiện cho việc sử dụng và tìm kiếm thông tin.

Tóm lại, tài liệu "Tài liệu dạy thêm học thêm chuyên đề phép chia hết" là một công cụ hữu ích giúp giáo viên và học sinh lớp 6 củng cố kiến thức và nâng cao kỹ năng giải các bài toán về phép chia hết.

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề tập hợp các số nguyên
Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp các số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Điền kí hiệu thích hợp vào chỗ trống. – Dạng điền kí hiệu. – Tập hợp số tự nhiên. – Tập hợp số nguyên gồm các số nguyên âm, số 0 và số nguyên dương. – A B nếu mọi phần tử của A đều thuộc B. – Dạng điền Đ (đúng) hoặc chữ S (sai); đánh dấu “x” vào ô đúng hoặc sai. Dạng 2 . Biểu diễn số nguyên trên trục số. Trục số là hình biểu diễn gồm một đường thẳng nằm ngang hoặc thẳng đứng, một đầu gắn với mũi tên (biểu thị chiều dương) được chia thành các khoảng bằng nhau (được gọi là đơn vị) và ghi kèm các số tương ứng. Điểm 0 (biểu diễn số 0) được gọi là điểm gốc của trục số (thường đặt tên là O). Điểm biểu diễn số a trên trục số gọi là điểm a. Với trục số nằm ngang: Chiều từ trái sang phải là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Với trục số thẳng đứng: Chiều từ dưới lên trên là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Dạng 3 . So sánh hai hay nhiều số nguyên. Cách 1 : Biểu diễn các số nguyên cần so sánh trên trục số. Giá trị các số nguyên tăng dần từ trái sang phải (điểm a nằm bên trái điểm b thì số nguyên a bé hơn số nguyên b). Cách 2 : Căn cứ vào các nhận xét sau: Số nguyên dương lớn hơn 0. Số nguyên âm nhỏ hơn 0. Số nguyên dương lớn hơn số nguyên âm. Trong hai số nguyên dương, số nào có giá trị tuyệt đối lớn hơn thì số ấy lớn hơn. Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số ấy lớn hơn. Kiến thức về giá trị tuyệt đối: – Giá trị tuyệt đối của một số tự nhiên là chính nó. – Giá trị tuyệt đối của một số nguyên âm là số đối của nó. – Giá trị tuyệt đối của một số nguyên là một số tự nhiên. – Hai số nguyên đối nhau có cùng một giá trị tuyệt đối. Dạng 4 . Viết tập hợp số. Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C …. Hai cách viết tập hợp số: Cách 1: Liệt kê các phần tử. Cách 2: Chỉ ra các tính chất đặc trưng. Chú ý: + Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. Dạng 5 . Sử dụng số nguyên âm trong thực tế. Số dương và số âm được dùng để biểu thị các đại lượng đối lập nhau hoặc có hướng ngược nhau. Số âm thường dùng để chỉ: – Nhiệt độ dưới 0C. – Độ cao dưới mực nước biển. – Số tiền còn nợ. – Số tiền lỗ. – Độ cận thị. – Thời gian trước Công Nguyên.
Tài liệu dạy thêm - học thêm chuyên đề ước và bội của số tự nhiên, ƯCLN và BCNN
Tài liệu gồm 21 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề ước và bội của số tự nhiên, ƯCLN và BCNN, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. A. ƯỚC VÀ BỘI, ƯỚC CHUNG VÀ BỘI CHUNG CỦA SỐ TỰ NHIÊN. Dạng 1. Nhận biết một số là ước (bội) của một số cho trước. Dạng 2. Tìm tất cả các ước (bội) của một số. Dạng 3. Tìm số tự nhiên thỏa mãn điều kiện chia hết. Dạng 4. Viết tập hợp các ước chung (bội chung) của hai hay nhiều số. Dạng 5. Bài toán có lời văn. B. ƯỚC CHUNG LỚN NHẤT. Dạng 1. Tìm ước chung lớn nhất của các số cho trước. Dạng 2. Tìm các ước chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Dạng 3. Bài toán có lời văn đưa về tìm ƯCLN. Dạng 4. Chứng minh hai hay nhiều số là các số nguyên tố cùng nhau. C. BỘI CHUNG NHỎ NHẤT. Dạng 1. Tìm bội chung nhỏ nhất của các số cho trước. Dạng 2. Tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Dạng 3. Tim các số tự nhiên thỏa mãn điều kiện cho trước. Dạng 4: Bài toán có lời văn.
Tài liệu dạy thêm - học thêm chuyên đề phép chia hết
Tài liệu gồm 28 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép chia hết, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính chất chia hết của một tổng, hiệu, tích, luỹ thừa. Dạng 1.1. Tính chia hết của một tổng, hiệu. Dạng 1.2. Tính chia hết của một tích. Dạng 1.3. Xét tính chia hết của một tổng các lũy thừa cùng cơ số. Dạng 2 . Dấu hiệu chia hết cho 2, 5. Dạng 2.1. Dấu hiệu chia hết cho 2, 5. Dạng 2.2. Xét tính chia hết cho 2, cho 5 của một tổng (hiệu). Dạng 2.3. Lập các số chia hết cho 2, cho 5 từ những chữ số cho trước. Dạng 2.4. Tìm các chữ số của một số thỏa mãn điều kiện chia hết cho 2, cho 5. Dạng 2.5. Tìm tập hợp các số tự nhiên chia hết cho 2, 5 thỏa mãn điều kiện cho trước. Dạng 3 . Dấu hiệu chia hết cho 3, cho 9. Dạng 3.1. Dấu hiệu chia hết cho 3, 9. Dạng 3.2. Xét tính chia hết cho 3, cho 9 của một tổng (hiệu). Dạng 3.3. Lập các số chia hết cho 3, cho 9 từ những chữ số cho trước. Dạng 3.4. Viết các số chia hết cho 3, 9 từ các số hoặc chữ số cho trước. Dạng 4 . Số nguyên tố. Hợp số. Dạng 4.1. Nhận biết số nguyên tố, hợp số. Dạng 4.2. Tìm các chữ số của mội số sao cho số đó là số nguyên tố hoặc hợp số. Dạng 5 . Phân tích một số ra thừa số nguyên tố. Dạng 5.1. Phân tích một số ra thừa số nguyên tố. Dạng 5.2. Xác định các ước của một số. Dạng 5.3. Xác định số lượng các ước của một số. Dạng 5.4. Bài toán đưa về việc phân tích một số ra thừa số nguyên tố.
Tài liệu dạy thêm - học thêm chuyên đề thứ tự thực hiện phép tính
Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề thứ tự thực hiện phép tính, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. + Đối với biểu thức không chứa dấu ngoặc ta thực hiện phép tính theo thứ tự của chiều mũi tên như sau: Luỹ thừa → Nhân – Chia → Cộng – Trừ. Được hiểu là: “Thực hiện nhân chia trước cộng trừ sau”. + Đối với biểu thức chứa dấu ngoặc, ta thực hiện phép tính trong từng loại ngoặc theo thứ tự của chiều mũi tên như sau: () → [] → {}. Được hiểu là “thực hiện từ trong ra ngoài”. Dạng 2 . Tìm x. 1. Nhắc lại các dạng toán “tìm x” cơ bản. 1.1 Tìm số hạng chưa biết trong một tổng. Muốn tìm số hạng chưa biết trong một tổng, ta lấy tổng trừ đi số hạng đã biết. 1.2 Tìm số bị trừ trong một hiệu. Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ x a b x b a. 1.3 Tìm số trừ trong một hiệu. Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu a x b x a b. 1.4 Tìm thừa số chưa biết trong một tích. Muốn tìm thừa số chưa biết trong một tích, ta lấy tích chia cho thừa số đã biết. 1.5 Tìm số bị chia trong một thương. Muốn tìm số bị chia ta lấy thương nhân với số chia x a b x b a. 1.6 Tìm số chia trong một thương. Muốn tìm số chia, ta lấy số bị chia chia cho thương a x b x a b. 2. Phương pháp giải bài toán “tìm x” ở các dạng mở rộng. Trong các dạng tìm x mở rộng nào ta cũng phải tìm phần ưu tiên có chứa x (có thể là tìm một lần hoặc tìm nhiều lần) để đưa về dạng cơ bản. Do đó, trong các bài toán “tìm x” ở dạng mở rộng ta phải tìm ra phần ưu tiên trong một bài toán tìm x. 2.1 Dạng ghép. 2.2 Dạng tích. 2.3 Dạng nhiều dấu ngoặc. 3. Phương pháp giải bài toán “tìm x” ở các dạng lũy thừa. Với dạng toán có lũy thừa, tính lũy thừa trước nếu các lũy thừa không chứa x. Tính ra số tự nhiên hoặc sử dụng các phép toán nhân, chia hai lũy thừa cùng cơ số, tùy vào bài toán cụ thể. Dạng 3 . Các bài toán liên quan đến dãy số, tập hợp. Tính tổng dãy số: Tổng = (Số đầu + Số cuối) . Số số hạng : 2. Số các số hạng = (Số cuối – Số đầu) : Khoảng cách giữa hai số liên tiếp + 1. Dạng 4 . Bài toán có lời văn.