Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022 2023 cụm THCS huyện Nga Sơn Thanh Hóa

Nội dung Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022 2023 cụm THCS huyện Nga Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022-2023 cụm THCS huyện Nga Sơn Thanh Hóa Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022-2023 cụm THCS huyện Nga Sơn Thanh Hóa Xin chào quý thầy cô giáo và các em học sinh lớp 7! Trong khuôn khổ chương trình học sinh giỏi, chúng ta sẽ có cơ hội tham gia vào đề giao lưu môn Toán lớp 7. Đề thi lần này bao gồm 05 câu hỏi, thời gian làm bài là 150 phút, không tính thời gian giao đề. Ngày thi đã được lên lịch vào ngày 23 tháng 02 năm 2023. Đề thi sẽ có đáp án, lời giải chi tiết và thang điểm để các em tham gia tự kiểm tra và cải thiện kiến thức của mình. Dưới đây là một số câu hỏi mẫu trong đề thi: Tìm x, y, z thỏa mãn: 4x + 3y = 4y + 3z và 2x + y = z + 14. Tìm số nguyên tố p sao cho p + 2, p + 6, p + 8, p + 14 đều là số nguyên tố. Tìm tất cả các số nguyên dương x, y thỏa mãn (x + y)^4 = 40x + 41. Cho tam giác ABC vuông cân tại A. Chứng minh MD = ME. Cho 100 99 98 97 A x 100x 100x 100x 100x 2122. Tính A khi x = 99. Đề thi sẽ đòi hỏi các em phải áp dụng kiến thức đã học để giải quyết các bài toán đa dạng và phức tạp. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải toán và cải thiện hiệu suất học tập của mình. File Word chứa đầy đủ nội dung của bài thi đã được chuẩn bị sẽ được cung cấp cho quý thầy cô để chuẩn bị cho buổi kiểm tra sắp tới. Chúc các em học sinh lớp 7 thành công và đạt kết quả cao trong đề giao lưu HSG lần 3 môn Toán!

Nguồn: sytu.vn

Đọc Sách

Đề HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Thạch Thành - Thanh Hóa
Thứ Ba ngày 30 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Thạch Thành, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Thạch Thành – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề HSG Toán 7 cấp trường năm 2020 - 2021 trường THCS Văn Tiến - Vĩnh Phúc
Đề HSG Toán 7 cấp trường năm 2020 – 2021 trường THCS Văn Tiến – Vĩnh Phúc gồm 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án + lời giải chi tiết + thang chấm điểm. Trích dẫn đề HSG Toán 7 cấp trường năm 2020 – 2021 trường THCS Văn Tiến – Vĩnh Phúc : + Trong một đợt lao động, ba khối 7, 8, 9 chuyên chở được 912 m3 đất. Trung bình mỗi học sinh khối 7, 8, 9 theo thứ tự làm được 1,2; 1,4; 1,6 m3 đất. Số học sinh khối 7, 8 tỉ lệ với 1 và 3. Khối 8 và 9 tỉ lệ với 4 và 5. Tính số học sinh mỗi khối. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a/ AC = EB và AC // BE. b/ Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K thẳng hàng. c/ Từ E kẻ EH BC (H BC). Biết góc HBE bằng 500; góc MEB bằng 250, tính các góc HEM và BME? + Tính giá trị của các biểu thức sau.
Đề giao lưu HSG Toán 7 năm 2019 - 2020 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. a) Chứng minh AM BC và MA = MC. b) Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh: MD = ME. c) Chứng minh: MD + ME >= AD + AE. + Hãy chia số 26 thành ba phần tỉ lệ nghịch với các số 2; 3; 4. + Cho đa thức. Tìm đa thức C = A – B. Tính giá trị của đa thức C tìm được ở trên khi 2x + y = 1.
Đề giao lưu HSG Toán 7 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC có ba góc nhọn, điểm M là trung điểm của BC. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD = AC. a) Chứng minh: BD = CE. b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh: BAC ACN 180. c) Gọi I là giao điểm của DE và AM. Tính tỉ số AD + IE DI + AE. + Cho a, b, c, d là các số tự nhiên khác 0. Chứng minh rằng: S = a b c d a b c a b d b c d a c d có giá trị không phải là số tự nhiên. + Cho hàm số f(x) xác định với mọi x R. Biết rằng với mọi x khác 0 ta đều có.