Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo Toán tuyển sinh năm 2020 2021 sở GD ĐT An Giang

Nội dung Đề tham khảo Toán tuyển sinh năm 2020 2021 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tham khảo Toán tuyển sinh năm 2020 2021 sở GD ĐT An Giang Đề tham khảo Toán tuyển sinh năm 2020 2021 sở GD ĐT An Giang Để giúp các em học sinh khối lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10, sở Giáo dục và Đào tạo tỉnh An Giang đã công bố đề tham khảo Toán tuyển sinh lớp 10 năm học 2020 – 2021. Đề tham khảo này gồm 05 bài toán tự luận, học sinh có 120 phút để làm bài thi. Trích dẫn đề tham khảo Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT An Giang: 1. Cho hàm số y = -x^2 có đồ thị là parabol (P). Hãy vẽ đồ thị (P) trên hệ trục tọa độ và viết phương trình đường thẳng (d) tiếp xúc parabol (P). Biết (d) cắt trục hoành và trục tung tại hai điểm A và B sao cho tam giác OAB vuông cân với O là gốc toạ độ. 2. Cho tam giác ABC có ba góc đều nhọn, vẽ đường tròn tâm (O) đường kính BC cắt hai cạnh AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD. Hãy chứng minh ADHE là tứ giác nội tiếp và chứng minh rằng DH là tia phân giác của EDF. 3. Gấp tờ giấy A4 có kích thước 210mm x 297mm theo đường chéo ta được một hình như hình vẽ bên. Hãy tính diện tích hình sau khi đã xếp (phần tô đậm).

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 - 2022 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa : + Cho bảng kẻ ô vuông kích thước 8 8 gồm có 64 ô vuông con (như hình vẽ bên). Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá một quân cờ. Hai quân cờ được gọi là “chiếu nhau” nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau. + Cho hai đường tròn O và O cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại P P A. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại Q Q A. Gọi I là điểm sao cho tứ giác AOIO là hình bình hành và D đối xứng với A qua B. a) Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác A P Q. Từ đó suy ra tứ giác A D P Q nội tiếp. b) Gọi M là trung điểm của đoạn PQ. Chứng minh ADP QDM. c) Giả sử hai đường thẳng IB và PQ cắt nhau tại S. Gọi K là giao điểm của ADvà PQ. Chứng minh: 2 1 1 SK SP SQ. + Cho các số hữu tỉ a b c đôi một phân biệt. Đặt 2 2 2 1 1 1 B a b b c c a. Chứng minh rằng B là số hữu tỉ.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (bảng chính thức do sở Giáo dục và Đào tạo tỉnh Nam Định công bố). Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Đường phân giác trong của BAC cắt đường tròn (O) tại D D A. Trên cung nhỏ AC của đường tròn (O) lấy điểm G khác C sao cho AG GC; một đường tròn có tâm là K đi qua A, G và cắt đoạn thẳng AD tại điểm P nằm bên trong tam giác ABC. Đường thẳng GK cắt đường tròn (O) tại điểm M M G. a) Chứng minh các tam giác KPG ODG đồng dạng với nhau. b) Chứng minh GP MD là hai đường thẳng vuông góc. c) Gọi F là giao điểm của hai đường thẳng OD và KP, đường thẳng qua A và song song với BC cắt đường tròn (K) tại điểm E E A. Chứng minh rằng tứ giác DGFP là tứ giác nội tiếp và 0 EGF 90. + Xét hai tập hợp A B khác ∅ thỏa mãn A B và A B. Biết rằng A có vô hạn phần tử và tổng của mỗi phần tử thuộc A với mỗi phần tử thuộc B là phần tử thuộc B. Gọi x là phần tử bé nhất thuộc B thỏa mãn x ≠ 1. Hãy tìm x. + Cho 1 2 12 pp p … là các số nguyên tố lớn hơn 3. Chứng minh rằng 22 2 1 2 12 pp p chia hết cho 12.
Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định (Đề 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 1); đề thi dành cho học sinh thi vào các lớp chuyên tự nhiên; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 1) : + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. 1) Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. 2) Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh IK song song với AP. 3) Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng HMC HAN. + Tìm tất cả các giá trị của tham số m để đường thẳng 2 y mx m (m ≠ 0) và đường thẳng y x 9 2 song song. + Tính thể tích của hình nón có đường sinh bằng 5cm và bán kính đáy 3cm.
Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định (Đề 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2); đề thi dành cho học sinh thi vào các lớp chuyên xã hội; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2) : + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. 1) Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. 2) Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh AP EF và AP // IK. 3) Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng M là trung điểm của đoạn BC và HMC HAN. + Tìm tất cả các giá trị của tham số m để đường thẳng y mx 1 (m ≠ 0) và đường thẳng y x 9 2 song song. + Tính thể tích của hình nón có chiều cao bằng 4cm và bán kính đáy 3cm.