Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang

Nội dung Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Xin chào quý thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán lớp 7 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Hãy cùng xem qua một số câu hỏi trong đề thi nhé: Cho một nhóm Địa y phát triển trên một khoảng đất hình tròn và có mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y theo công thức: d = 7t − 12 (với t ≥ 12). Biết vào năm 2022, đường kính của một nhóm Địa y là 42mm, hãy tính xem băng trên dòng sông đó đã tan vào năm nào? Trong tam giác vuông cân MNP ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. Hãy chứng minh rằng HMN = KPM và MAP là tam giác cân với AH vuông góc AK. Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bể là 34 cm. Hãy tính thể tích của tiểu cảnh đó. Hy vọng rằng các em sẽ làm tốt các câu hỏi trong đề thi này. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 7 môn Toán năm 2019 2020 phòng GD ĐT Lục Nam Bắc Giang
Nội dung Đề thi HSG lớp 7 môn Toán năm 2019 2020 phòng GD ĐT Lục Nam Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 7 năm 2019-2020 phòng GD&ĐT Lục Nam - Bắc Giang Đề thi HSG Toán lớp 7 năm 2019-2020 phòng GD&ĐT Lục Nam - Bắc Giang Ngày 01 tháng 06 năm 2020, Hội đồng Giáo dục và Đào tạo Lục Nam, tỉnh Bắc Giang đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán cho học sinh lớp 7 năm học 2019-2020. Đề thi bao gồm một trang với 5 bài toán dạng tự luận và thời gian làm bài là 150 phút. Trong đề thi, có một bài toán đề cập đến một cửa hàng có ba cuộn vải với tổng chiều dài 186m. Giá tiền mỗi mét vải của ba cuộn vải đều như nhau. Sau khi bán được một ngày, cửa hàng còn lại 2/3 cuộn vải thứ nhất, 1/3 cuộn vải thứ hai và 3/5 cuộn vải thứ ba. Số tiền bán được của ba cuộn tỉ lệ với 2 : 3 : 2. Yêu cầu là tính số vải đã bán được của mỗi cuộn vải trong ngày đó. Bên cạnh đó, đề thi còn yêu cầu học sinh tìm các số nguyên dương x, y, z sao cho x + y + z = xyz, cũng như chứng minh rằng với số nguyên n không chia hết cho 2 và 3, biểu thức 4n^2 + 3n + 5 sẽ chia hết cho 6. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức và kỹ năng toán học một cách logic và tỉ mỉ để có thể giải quyết các bài toán phức tạp từ đề thi. Đây là nơi thách thức và thể hiện năng lực của học sinh lớp 7 về môn Toán.
15 đề thi HSG cấp huyện lớp 7 môn Toán có lời giải chi tiết
Nội dung 15 đề thi HSG cấp huyện lớp 7 môn Toán có lời giải chi tiết Bản PDF - Nội dung bài viết Tài liệu ôn luyện cho kỳ thi Học sinh giỏi Toán lớp 7 cấp huyện Tài liệu ôn luyện cho kỳ thi Học sinh giỏi Toán lớp 7 cấp huyện Để giúp các em học sinh lớp 7 chuẩn bị tốt cho kỳ thi Học sinh giỏi Toán cấp huyện, Sytu tổng hợp tài liệu 15 đề thi HSG Toán lớp 7 cấp huyện với lời giải chi tiết. Các đề thi này được biên soạn bởi tác giả có chuyên môn cao về Toán Học. Các nội dung trong tài liệu bao gồm: Bài toán 1: Tìm số tự nhiên có 3 chữ số theo điều kiện đề bài đưa ra. Bài toán 2: Chứng minh một số tính chất của đoạn thẳng và tam giác trên mặt phẳng. Bài toán 3: Tính số đo các góc trong tam giác có điều kiện góc A = 3B = 6C và chứng minh một bất đẳng thức liên quan đến các đoạn thẳng trong tam giác. Tài liệu này không chỉ giúp các em ôn tập, rèn luyện kỹ năng giải bài tập mà còn giúp họ hiểu sâu về các vấn đề Toán học cụ thể. Hy vọng rằng tài liệu sẽ giúp ích cho việc học tập và chuẩn bị cho cuộc thi sắp tới của các em học sinh lớp 7.
Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Xin chào quý thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 của phòng GD&ĐT Đông Hưng - Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em tham khảo. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC có góc A tù. Kẽ AD // AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE // AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM // DE. Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. Không dùng máy tính, hãy tính giá trị của biểu thức S. Hy vọng đây sẽ là tài liệu hữu ích để các em ôn tập và chuẩn bị cho kì thi sắp tới. Chúc các em học tốt!
Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội
Nội dung Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ Toán lớp 7 năm 2018 – 2019 của cụm trường THCS quận Đống Đa, Hà Nội bao gồm 01 trang với 4 câu tự luận. Đề thi được tổ chức nhằm tạo cơ hội cho các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội cùng giao lưu, tuyển chọn. Mục tiêu của đề thi là tuyên dương, khen thưởng và thúc đẩy nâng cao chất lượng học tập môn Toán lớp 7.