Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Du Lâm Đồng

Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Du Lâm Đồng Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 trường THCS Nguyễn Du Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 trường THCS Nguyễn Du Chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 - 2024 trường THCS Nguyễn Du, thành phố Đà Lạt, tỉnh Lâm Đồng. Kỳ thi sẽ diễn ra vào ngày 21 tháng 10 năm 2023, và đề thi sẽ bao gồm cả đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 trường THCS Nguyễn Du - Lâm Đồng: Bạn An mua một số quyển vở và bút máy hết tất cả là 102 nghìn đồng. Biết giá mỗi quyển vở là 12 nghìn đồng, giá mỗi cây bút là 10 nghìn đồng. Hỏi bạn An mua được bao nhiêu quyển vở và bao nhiêu cây bút? Định mức giá điện sinh hoạt năm 2021 như sau: - Số điện (kWh) Giá bán điện (đồng/kWh) - Bậc 1: Từ 0 – 50 kWh 1.678 - Bậc 2: Từ 51 – 100 kWh 1.734 - Bậc 3: Từ 101 – 200 kWh 2.014 - Bậc 4: Từ 201 – 300 kWh 2.536 - Bậc 5: Từ 301 – 400 kWh 2.834 - Bậc 6: Từ 401 kWh trở lên 2.927. Tiền điện được tính theo bậc, với thuế giá trị gia tăng (GTGT) 10%. a) Trong tháng 6/2021, nhà bạn Xuân sử dụng hết 230 kWh điện. Tính tiền điện nhà bạn Xuân phải trả. b) Cũng trong tháng đó, nhà bác Hạ đã phải trả 548,680 đồng tiền điện. Hỏi nhà bác Hạ đã sử dụng hết bao nhiêu kWh điện? Từ tấm nhôm hình vuông cạnh 6 dm, người ta muốn cắt một hình thang để diện tích hình thang cắt được nhỏ nhất. Tìm tổng x+y để diện tích hình thang cắt được nhỏ nhất. Như vậy, đề thi năm nay sẽ đòi hỏi sự nhanh nhẹn, logic và kiến thức vững chắc từ các em học sinh. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Trên bảng có 2022 số tự nhiên khác nhau từ 1 đến số 2022. Lần thứ nhất xóa đi 2 số bất kì và viết tổng của chúng lên bảng, lúc này trên bảng còn 2021 số. Lần thứ hai xóa đi 2 số bất kì và viết tổng của chúng lên bảng và cứ tiếp tục như vậy. Hỏi lần thứ 2021, trên bảng còn lại số nào? + Cho hình vuông cạnh 2a và hai nửa đường tròn bán kính cùng bằng a, tiếp xúc với nhau như hình vẽ. Một đường tròn (I) tiếp xúc với hai nửa đường tròn đã cho và tiếp xúc với cạnh hình vuông. Tính diện tích hình tròn (I). + Cho đường tròn (O) đường kính BC và điểm A di động trên đường tròn (O) (A khác B và C). Gọi H là chân đường vuông góc kẻ từ A đến cạnh BC của tam giác ABC. Gọi D là trung điểm của HC. Qua H kẻ đường thẳng vuông góc với AD cắt AB tại E. a) Chứng minh rằng HD.HE = AD.AH b) Chứng minh rằng B là trung điểm của AE. Tìm quỹ tích điểm E.