Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ năng giải bài toán khoảng cách trong hình học không gian - Trần Thanh Hữu

Tài liệu gồm 51 trang là Sáng Kiến Kinh Nghiệm của thầy Trần Thanh Hữu (GV trường THPT Nguyễn Thái Học – Gia Lai) nhằm chia sẻ một số giải pháp giúp học sinh 12 phát huy khả năng giải bài toán khoảng cách trong hình học không gian ở kỳ thi THPT Quốc gia môn Toán. Tài liệu đề cập đến 3 giải pháp để giải quyết bài toán khoảng cách trong hình học không gian: Giải pháp 1 : Vận dụng định nghĩa khoảng cách từ một điểm đến một đường thẳng và mặt phẳng để giải quyết các bài toán khoảng cách. Trong giải pháp này giáo viên cần ôn lại kiến thức về hình học không gian, hệ thức lượng trong tam giác đặc biệt là hệ thức lượng trong tam giác vuông, định lý Talet trong tam và hướng dẫn cho học sinh sử dụng linh hoạt chúng, giáo viên cần xây dựng các ví dụ đa dạng từ dạng đơn giản đến ví dụ đòi hỏi dạng tư duy, suy luận, có ví dụ ở dạng tự luận, có ví dụ ở dạng trắc nghiệm để học sinh thấy được khoảng cách từ một điểm đến đường thẳng và mặt phẳng là một kiến thức qua trọng, là nền tảng để đi giải quyết các bài toán tính khoảng cách trong hình học không gian. Giải pháp 2 : Vận dụng thể tích, tỷ số thể tích của tứ diện để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1 để tính khoảng cách trong hình học không gian đòi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng. Tuy nhiên, đối với học sinh yếu việc dựng hình chiếu đối với mình hơi quá sức. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết sử dụng linh hoạt công thức tính thể tích của một tứ diện, công thức tỷ số thể tích để tính khoảng cách từ một điểm đến một mặt phẳng dễ dàng hơn, không cần phải dựng hình chiếu; học sinh sẽ có động lực nghiên cứu, đam mê và yêu thích nội dung này. [ads] Giải pháp 3 : Vận dụng phương pháp tọa độ hóa để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1,2 để tính khoảng cách trong hình học không gian đồi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng, biết cách xác định chiều cao của hình chóp, biết cách vận dụng kiến thức hệ thức lượng trong tam giác một cách linh hoạt. Tuy nhiên đối với học sinh trung bình – yếu thì đôi khi còn quá khó vì kiến thức đó các em không còn nhớ. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết cách xây dựng hệ trục tọa độ, chuyển bài toán hình học không gian thuần túy về giả thuyết là một bài toán trong tọa độ Oxyz, sử dụng linh hoạt kiến thức tọa độ mà các em học sinh 12 vừa được học để giải quyết bài toán khoảng cách là một cách làm hợp lý, học sinh sẽ thấy được việc học của mình có ứng dụng, giải quyết được một số bài toán mà trước đây mình thấy rất khó, không thể giải quyết được thì nay lại làm được một cách đơn giản và đặc biệt là giải trong bài toán trắc nghiệm thì quá hiệu quả. Từ đó, tạo động lực cho các em học tập, nghiên cứu, tìm tòi ra những ứng dụng mới cho kiến thức của mình được học và từ đó có niềm yêu toán học.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm VD - VDC khối đa diện và thể tích khối đa diện - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 1 – khối đa diện và thể tích khối đa diện, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề khối đa diện và thể tích khối đa diện. Tài liệu trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông gồm 107 trang với các bài tập trắc nghiệm khối đa diện và thể tích khối đa diện ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về khối đa diện và thể tích khối đa diện được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông: + Dạng toán 1. Thể tích khối chóp. + Dạng toán 2. Thể tích khối lăng trụ. + Dạng toán 3. Tỉ lệ thể tích. + Dạng toán 4. Cực trị thể tích. + Dạng toán 5. Góc và khoảng cách liên quan đến thể tích. + Dạng toán 6. Bài toán ứng dụng thực tế.
Lý thuyết và bài tập khối đa diện và thể tích khối đa diện - Phùng Hoàng Em
Nhằm hỗ trợ các em học sinh khối 12 trong quá trình học tập và rèn luyện chương trình Hình học 12 chương 1, giới thiệu đến các em tài liệu lý thuyết và bài tập khối đa diện và thể tích khối đa diện do thầy Phùng Hoàng Em biên soạn, tài liệu gồm 32 trang với các bài tập trắc nghiệm về chủ đề khối đa diện và thể tích khối đa diện, được phân theo từng dạng bài và có đáp án. Khái quát nội dung tài liệu lý thuyết và bài tập khối đa diện và thể tích khối đa diện – Phùng Hoàng Em: BÀI 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN A. KIẾN THỨC CẦN NHỚ. B. BÀI TẬP TRẮC NGHIỆM. + Dạng toán 1. Nhận biết hình đa diện. + Dạng toán 2. Đếm số cạnh và số mặt của một hình đa diện. + Dạng toán 3. Phân chia và lắp ghép khối đa diện. BÀI 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU A. KIẾN THỨC CẦN NHỚ. B. BÀI TẬP TRẮC NGHIỆM. + Dạng toán 1. Nhận biết khối đa diện lồi và khối đa diện đều. + Dạng toán 2. Số mặt phẳng đối xứng của hình đa diện. [ads] BÀI 3 . THỂ TÍCH KHỐI CHÓP A. LÝ THUYẾT CẦN NHỚ. B. MỘT SỐ VÍ DỤ MINH HỌA. + Dạng toán 1. Khối chóp có cạnh bên vuông góc với đáy. + Dạng toán 2. Khối chóp có mặt phẳng chứa đỉnh vuông góc với đáy. + Dạng toán 3. Khối chóp có hai mặt phẳng chứa đỉnh cùng vuông góc với đáy. + Dạng toán 4. Khối chóp đều. + Dạng toán 5. Khối chóp biết hình chiếu của đỉnh xuống mặt đáy. C. BÀI TẬP TRẮC NGHIỆM. BÀI 4 . THỂ TÍCH KHỐI LĂNG TRỤ A. LÝ THUYẾT CẦN NHỚ. B. MỘT SỐ VÍ VỤ MINH HỌA. + Dạng toán 1. Khối lăng trụ đứng tam giác. + Dạng toán 2. Khối lăng trụ đứng tứ giác. + Dạng toán 3. Khối lăng trụ xiên. C. BÀI TẬP TRẮC NGHIỆM. BÀI 5 . MỘT SỐ ĐỀ ÔN TẬP A. ĐỀ ÔN SỐ 1. B. ĐỀ ÔN SỐ 2. C. ĐỀ ÔN SỐ 3.
Các dạng toán thể tích khối đa diện thường gặp trong kỳ thi THPTQG
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 tài liệu tuyển tập các dạng câu hỏi và bài tập trắc nghiệm thể tích khối đa diện thường gặp trong đề thi THPT Quốc gia môn Toán. Tài liệu gồm 95 trang được tổng hợp bởi thầy Nguyễn Bảo Vương tuyển chọn 151 câu trắc nghiệm thể tích khối đa diện và các bài toán liên quan có đáp án và lời giải chi tiết từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo và đề minh họa THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu các dạng toán thể tích khối đa diện thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 .THỂ TÍCH KHỐI CHÓP + Dạng 1.1 Biết chiều cao và diện tích đáy (Trang 2). + Dạng 1.2 Cạnh bên vuông góc với đáy (Trang 2). + Dạng 1.3 Mặt bên vuông góc với đáy (Trang 5). + Dạng 1.4 Biết hình chiếu của đỉnh lên đáy (Trang 6). + Dạng 1.5 Thể tích khối chóp đều (Trang 7). + Dạng 1.6 Thể tích khối chóp khác (Trang 8). Dạng 2 . THỂ TÍCH KHỐI LĂNG TRỤ + Dạng 2.1 Biết chiều cao và diện tích đáy (Trang 9). + Dạng 2.2 Thể tích khối lăng trụ đứng (Trang 10). + Dạng 2.3 Thể tích khối lăng trụ xiên (Trang 12). Dạng 3 . THỂ TÍCH KHỐI ĐA DIỆN KHÁC Dạng 4 . TỈ SỐ THỂ TÍCH + Dạng 4.1 Tỉ số thể tích của khối chóp (Trang 16). + Dạng 4.2 Tỉ số thể tích các khối đa diện (Trang 16). + Dạng 4.3 Ứng dụng tỉ số thể tích để tìm thể tích (Trang 18). Dạng 5 . BÀI TOÁN THỰC TẾ VÀ BÀI TOÁN CỰC TRỊ [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 .THỂ TÍCH KHỐI CHÓP + Dạng 1.1 Biết chiều cao và diện tích đáy (Trang 23). + Dạng 1.2 Cạnh bên vuông góc với đáy (Trang 23). + Dạng 1.3 Mặt bên vuông góc với đáy (Trang 31). + Dạng 1.4 Biết hình chiếu của đỉnh lên đáy (Trang 36). + Dạng 1.5 Thể tích khối chóp đều (Trang 38). + Dạng 1.6 Thể tích khối chóp khác (Trang 43). Dạng 2 . THỂ TÍCH KHỐI LĂNG TRỤ + Dạng 2.1 Biết chiều cao và diện tích đáy (Trang 48). + Dạng 2.2 Thể tích khối lăng trụ đứng (Trang 48). + Dạng 2.3 Thể tích khối lăng trụ xiên (Trang 53). Dạng 3 . THỂ TÍCH KHỐI ĐA DIỆN KHÁC Dạng 4 . TỈ SỐ THỂ TÍCH + Dạng 4.1 Tỉ số thể tích của khối chóp (Trang 68). + Dạng 4.2 Tỉ số thể tích các khối đa diện (Trang 70). + Dạng 4.3 Ứng dụng tỉ số thể tích để tìm thể tích (Trang 78). Dạng 5 . BÀI TOÁN THỰC TẾ VÀ BÀI TOÁN CỰC TRỊ Phần lời giải chi tiết các bài toán được trình bày logic, rõ ràng, sẽ giúp các em nắm được phương pháp tư duy giải các bài toán trắc nghiệm thể tích khối đa diện, từ đó học tốt hơn chương trình Hình học 12 chương 1, cũng như ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.
Các dạng toán góc và khoảng cách thường gặp trong kỳ thi THPTQG
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 tài liệu tuyển tập các dạng câu hỏi và bài tập trắc nghiệm góc và khoảng cách trong không gian thường gặp trong đề thi THPT Quốc gia môn Toán. Tài liệu gồm 72 trang được tổng hợp bởi thầy Nguyễn Bảo Vương tuyển chọn 84 câu trắc nghiệm góc và khoảng cách trong không gian có đáp án và lời giải chi tiết từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo và đề minh họa THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Với phần lời giải chi tiết được phân tích và trình bày rất rõ ràng, các em sẽ nắm được phương pháp giải các dạng toán về góc và khoảng cách khi học chủ đề Hình học không gian. Mục lục tài liệu các dạng toán góc và khoảng cách thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 . Góc + Dạng 1.1 Góc của đường thẳng với mặt phẳng (Trang 1). + Dạng 1.2 Góc của đường thẳng với đường thẳng (Trang 4). + Dạng 1.3 Góc của mặt với mặt (Trang 5). Dạng 2 . Khoảng cách + Dạng 2.1 Khoảng cách từ điểm đến mặt phẳng (Trang 8). + Dạng 2.2 Khoảng cách của đường thẳng với đường thẳng (Trang 11). + Dạng 2.3 Khoảng cách của đường với mặt (Trang 15). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Góc + Dạng 1.1 Góc của đường thẳng với mặt phẳng (Trang 15). + Dạng 1.2 Góc của đường thẳng với đường thẳng (Trang 25). + Dạng 1.3 Góc của mặt với mặt (Trang 27). Dạng 2 . Khoảng cách + Dạng 2.1 Khoảng cách từ điểm đến mặt phẳng (Trang 39). + Dạng 2.2 Khoảng cách của đường thẳng với đường thẳng (Trang 51). + Dạng 2.3 Khoảng cách của đường với mặt (Trang 71).