Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ năng giải bài toán khoảng cách trong hình học không gian - Trần Thanh Hữu

Tài liệu gồm 51 trang là Sáng Kiến Kinh Nghiệm của thầy Trần Thanh Hữu (GV trường THPT Nguyễn Thái Học – Gia Lai) nhằm chia sẻ một số giải pháp giúp học sinh 12 phát huy khả năng giải bài toán khoảng cách trong hình học không gian ở kỳ thi THPT Quốc gia môn Toán. Tài liệu đề cập đến 3 giải pháp để giải quyết bài toán khoảng cách trong hình học không gian: Giải pháp 1 : Vận dụng định nghĩa khoảng cách từ một điểm đến một đường thẳng và mặt phẳng để giải quyết các bài toán khoảng cách. Trong giải pháp này giáo viên cần ôn lại kiến thức về hình học không gian, hệ thức lượng trong tam giác đặc biệt là hệ thức lượng trong tam giác vuông, định lý Talet trong tam và hướng dẫn cho học sinh sử dụng linh hoạt chúng, giáo viên cần xây dựng các ví dụ đa dạng từ dạng đơn giản đến ví dụ đòi hỏi dạng tư duy, suy luận, có ví dụ ở dạng tự luận, có ví dụ ở dạng trắc nghiệm để học sinh thấy được khoảng cách từ một điểm đến đường thẳng và mặt phẳng là một kiến thức qua trọng, là nền tảng để đi giải quyết các bài toán tính khoảng cách trong hình học không gian. Giải pháp 2 : Vận dụng thể tích, tỷ số thể tích của tứ diện để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1 để tính khoảng cách trong hình học không gian đòi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng. Tuy nhiên, đối với học sinh yếu việc dựng hình chiếu đối với mình hơi quá sức. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết sử dụng linh hoạt công thức tính thể tích của một tứ diện, công thức tỷ số thể tích để tính khoảng cách từ một điểm đến một mặt phẳng dễ dàng hơn, không cần phải dựng hình chiếu; học sinh sẽ có động lực nghiên cứu, đam mê và yêu thích nội dung này. [ads] Giải pháp 3 : Vận dụng phương pháp tọa độ hóa để giải quyết bài toán khoảng cách trong hình học không gian. Trong giải pháp 1,2 để tính khoảng cách trong hình học không gian đồi hỏi học sinh phải biết cách dựng hình chiếu của một điểm lên một đường thẳng và mặt phẳng, biết cách xác định chiều cao của hình chóp, biết cách vận dụng kiến thức hệ thức lượng trong tam giác một cách linh hoạt. Tuy nhiên đối với học sinh trung bình – yếu thì đôi khi còn quá khó vì kiến thức đó các em không còn nhớ. Để khắc phục điều đó, trong giải pháp này, giáo viên cần hướng dẫn cho học sinh biết cách xây dựng hệ trục tọa độ, chuyển bài toán hình học không gian thuần túy về giả thuyết là một bài toán trong tọa độ Oxyz, sử dụng linh hoạt kiến thức tọa độ mà các em học sinh 12 vừa được học để giải quyết bài toán khoảng cách là một cách làm hợp lý, học sinh sẽ thấy được việc học của mình có ứng dụng, giải quyết được một số bài toán mà trước đây mình thấy rất khó, không thể giải quyết được thì nay lại làm được một cách đơn giản và đặc biệt là giải trong bài toán trắc nghiệm thì quá hiệu quả. Từ đó, tạo động lực cho các em học tập, nghiên cứu, tìm tòi ra những ứng dụng mới cho kiến thức của mình được học và từ đó có niềm yêu toán học.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp lý thuyết khối đa diện và thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề khối đa diện và thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Hình học chương 1. MỤC LỤC : Chủ đề 01. HÌNH ĐA DIỆN – KHỐI ĐA DIỆN. Chủ đề 02. THỂ TÍCH KHỐI CHÓP. + Dạng 1.1. Chóp có cạnh bên vuông góc với đáy 9. + Dạng 1.2. Chóp có mặt bên vuông góc với đáy 10. + Dạng 1.3. Chóp đều 11. + Dạng 1.4. Tỷ số thể tích 13. + Dạng 1.5. Tổng hiệu thể tích 16. Chủ đề 03. THỂ TÍCH KHỐI LĂNG TRỤ. + Dạng 2.1. Thể tích lăng trụ đứng 19. + Dạng 2.2. Thể tích lăng trụ xiên 20. + Dạng 2.3. Thể tích khối lập phương – khối hộp 21. + Dạng 2.4. Khối đa diện được cắt ra từ khối lăng trụ 22. + Dạng 2.5. Max – min thể tích 25.
Một số bài toán liên quan đến tỷ số thể tích khối đa diện
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp giải một số bài toán liên quan đến tỷ số thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN TỶ SỐ THỂ TÍCH. Dạng 1 : Tỷ số liên quan đến diện tích đáy và đường cao. + Mức 1: Cho hình chóp S.ABC có thể tích là V. Gọi M là trung điểm BC. Thể tích khối chóp S.ABM bằng? + Mức 2: Cho hình chóp S.ABC có thể tích là V. Gọi M, N là trung điểm AB, AC. Thể tích khối chóp S.AMN bằng? + Mức 3: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P là trung điểm SA, AB, AC. Thể tích khối chóp M.ANP bằng? + Mức 4: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi V là thể tích khối chóp S.ABCD. Thể tích khối chóp S.ABO bằng? + Mức 5: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi V là thể tích khối chóp S.ABCD. M là trung điểm SA. Thể tích khối chóp M.ABO bằng? Dạng 2 : Tỷ số thể tích khối chóp tam giác. + Mức 1: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P lần lượt là trung điểm SA, SB, SC. Thể tích khối chóp S.MNP bằng? + Mức 2: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P lần lượt là trung điểm SA, SB, SC. Thể tích khối đa diện MNPCBA bằng? + Mức 3: Cho hình chóp S.ABC có thể tích là V. Gọi M, N lần lượt là trung điểm SB, SC. Thể tích khối chóp S.AMN bằng? + Mức 4: Cho hình chóp S.ABC có thể tích là V. Gọi M, N lần lượt là trung điểm SB, SC. Thể tích khối chóp A.MNCB bằng? Dạng 3 : Tỷ số thể tích khối chóp tứ giác. + Mức 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi V là thể tích khối chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm SA, SB, SC, SD. Thể tích khối chóp S.MNPQ bằng? + Mức 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi V là thể tích khối chóp S.ABCD. Gọi M, N lần lượt là trung điểm SA, SB. Thể tích khối chóp S.MNCD bằng? Dạng 4 : Tỷ số thể tích khối lăng trụ. + Mức 1: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Thể tích khối chóp A’.ABC bằng? + Mức 2: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Thể tích khối chóp A’.B’C’CB bằng? + Mức 3: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M, N lần lượt là trung điểm BB’, CC’. Thể tích khối chóp A’.B’C’NM bằng? + Mức 4: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M, N, P lần lượt là trung điểm AA’, BB’, CC’. Thể tích khối A’B’C’. MNP bằng? + Mức 5: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M là trung điểm BB’. Thể tích khối chóp M.A’B’C’ bằng? + Mức 6: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Thể tích khối chóp A’.ABC bằng? + Mức 7: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Thể tích khối tứ diện BDA’C’ bằng? + Mức 8: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Gọi M, N, P, Q lần lượt là trung điểm AA’, BB’, CC’, DD’. Thể tích khối đa diện A’B’C’D’.QMNP bằng? + Mức 9: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Gọi M, N lần lượt là trung điểm AA’, BB’. Thể tích khối đa diện A’B’NMDCC’D’ bằng? Dạng 5 : Một số bài toán khác. + Mức 1: Cho tam giác ABC đều có cạnh bằng a. Dựng AA’, BB’, CC, vuông góc với (ABC) sao cho AA’ = 3a, BM = CN = a. Thể tích khối đa diện A’ABCNM bằng? + Mức 2: Cho tam giác ABC đều có cạnh bằng a. Dựng AA’, BB’, CC’ vuông góc với (ABC) sao cho AA’ = 4a, BM = 2a, CN = 4a/3. Thể tích khối đa diện A’ABCNM bằng? BÀI TẬP RÈN LUYỆN. LỜI GIẢI CHI TIẾT.
Tài liệu chuyên đề khối đa diện và thể tích khối đa diện
Tài liệu gồm 443 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . KHỐI ĐA DIỆN. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 2 . KHỐI ĐA DIỆN LỒI – KHỐI ĐA DIỆN ĐỀU. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. III BÀI TẬP TRẮC NGHIỆM TỔNG HỢP. BÀI 3 . THỂ TÍCH KHỐI ĐA DIỆN. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TỰ LUẬN. Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. + Loại 1. Tính bằng công thức. + Loại 2. Tính thể tích khối chóp có cạnh bên vuông góc với đáy khi biết góc giữa đường thẳng và mặt phẳng. + Loại 3. Tính thể tích khối chóp có cạnh bên vuông góc đáy khi biết góc giữa hai mặt phẳng. + Loại 4. Tính thể tích khối chóp có cạnh bên vuông góc với đáy khi biết khoảng cách từ một điểm đến một mặt phẳng. Dạng 2. Thể tích khối chóp có hình chiếu của đỉnh là các điểm đặc biệt trên mặt đáy (không trùng với các đỉnh của đa giác đáy). + Trường hợp 1. Hình chiếu của đỉnh trên mặt đáy nằm trên cạnh của đa giác đáy (một mặt bên của hình chóp vuông góc với mặt đáy). + Trường hợp 2. Hình chiếu của đỉnh trên mặt đáy nằm ở miền trong của đa giác đáy. + Trường hợp 3. Hình chiếu của đỉnh trên mặt đáy nằm ở miền ngoài của đa giác đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối lăng trụ đứng – đều. Dạng 5. Thể tích khối lăng trụ xiên. + Loại 1. Tính thể tích lăng trụ xiên bằng cách xác định chiều cao và diện tích đáy. + Loại 2. Tính thể tích lăng trụ xiên khi biết các yếu tố góc, khoảng cách. + Loại 3. Tính thể tích lăng trụ (tam giác) gián tiếp qua thể tích khối chóp. Dạng 6. Thể tích các khối đa diện khác. Dạng 7. Các bài toán ứng dụng thể tích tính diện tích, khoảng cách. + Dạng 7.1. Ứng dụng thể tích tính khoảng cách từ điểm đến mặt phẳng. + Dạng 7.2. Ứng dụng thể tích tính khoảng cách giữa hai đường thẳng chéo nhau. Dạng 8. Các bài toán về tỉ số thể tích. + Dạng 8.1. Thể tích khối chóp. + Dạng 8.2. Thể tích khối lăng trụ. III HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Các dạng bài tập trắc nghiệm. THỂ TÍCH KHỐI CHÓP. Dạng 1. Cạnh bên vuông góc với đáy. Dạng 2. Mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Cạnh bên vuông góc với đáy. Dạng 5. Mặt bên vuông góc với đáy. Dạng 6. Thể tích khối chóp đều. Dạng 7. Thể tích khối chóp khác. THỂ TÍCH KHỐI LĂNG TRỤ. Dạng 1. Thể tích khối lăng trụ đứng. Dạng 2. Thể tích khối lăng trụ xiên. TỈ SỐ THỂ TÍCH. Dạng 1. Tỉ số thể tích khối chóp tam giác. Dạng 2. Tỉ số khối lăng trụ.
Một số dạng toán liên quan đến thể tích khối lăng trụ
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn giải một số dạng toán liên quan đến thể tích khối lăng trụ trong chuyên đề thể tích khối đa diện môn Toán 12. Dạng 1 : Khối lăng trụ có cạnh bên vuông góc với đáy. Phương pháp: Cho hình lăng trụ đứng ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Dạng 2 : Khối lăng trụ đều. Phương pháp: Cho hình lăng trụ tam giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Phương pháp: Cho hình lăng trụ tứ giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABCD. Dạng 3 : Khối hộp chữ nhật – Khối lập phương. Phương pháp: Cho hình hộp chữ nhật ABCD A B C D. Thể tích khối hộp: V abc. Phương pháp: Cho hình lập phương ABCD A B C D. + Thể tích khối lập phương: 3 V a. Dạng 4 : Khối lăng trụ xiên bất kì. Phương pháp: Cho hình lăng trụ ABC A B C. + Đường cao: AH H là hình chiếu vuông góc của A trên ABC. + Thể tích khối lăng trụ: V AH SABC.