Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Vĩnh Long

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Vĩnh Long Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Vĩnh Long Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức dành cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Vĩnh Long. Kỳ thi sẽ diễn ra vào ngày 04 tháng 06 năm 2022, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Vĩnh Long: + Cho phương trình $2xm^3 - 2 = 0$ (trong đó $x$ là ẩn số và $m$ là tham số). Tìm $m$ sao cho phương trình có hai nghiệm phân biệt $x_1$ và $x_2$ sao cho biểu thức $2x_1^2 + x_2^2$ đạt giá trị lớn nhất. + Cho đường tròn $O$ có đường kính $AB$. Gọi $H$ là điểm thuộc đoạn thẳng $AO$ ($H$ nằm giữa $A$ và $O$). Vẽ đường thẳng vuông góc với $AB$ qua $H$, cắt đường tròn $O$ tại $C$ và $D$. Hai đường thẳng $BC$ và $AD$ cắt nhau tại $M$. Gọi $N$ là hình chiếu của $M$ trên $AB$. a) Chứng minh $\triangle ACN \sim \triangle AMN$. b) Chứng minh $2CH = NH = OH$. c) Tiếp tuyến tại $A$ của đường tròn $(O)$ cắt $NC$ tại $E$. Chứng minh đường thẳng $EB$ đi qua trung điểm của đoạn thẳng $CH$. + Trong hình vuông $ABCD$ có đường tròn ngoại tiếp $O$, trên dây cung $DC$ lấy điểm $E$ sao cho $DC = 3DE$. Đường thẳng $AE$ cắt cung nhỏ $DC$ tại $M$. Gọi $I$ là giao điểm của $BM$ và $DC$, vẽ $OH$ vuông góc với $DM$ tại $H$. Tính độ dài các đoạn thẳng $AE$ và $DI$ theo $R$. Quý thầy, cô và các em học sinh có thể tải về file WORD đầy đủ để xem toàn bộ đề thi và lời giải chi tiết. Chúc các bạn ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán tuyển sinh lớp 10 năm 2020 2021 trường THCS Yên Mỹ Hà Nội
Đề thi thử lần 1 vào 10 môn Toán năm 2020 2021 phòng GDĐT Hải Hậu Nam Định
Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở Bình Định
Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2020 2021 sở GDĐT Tây Ninh