Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lâm Đồng

Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG THPT năm học 2017 2018 lớp 12 môn Toán sở GD và ĐT Hà Nam
Nội dung Đề thi chọn HSG THPT năm học 2017 2018 lớp 12 môn Toán sở GD và ĐT Hà Nam Bản PDF Đề thi chọn HSG THPT năm học 2017 – 2018 môn Toán lớp 12 sở GD và ĐT Hà Nam gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi HSG Toán lớp 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG THPT năm học 2017 – 2018 môn Toán lớp 12 : + Cho hàm số y = -x^3 + 3mx^2 + 3(1 – m^2)x + m^3 – m^2, với m là tham số thực. Chứng minh rằng ∀m ∈ R hàm số trên luôn có hai điểm cực trị. Tìm tọa độ điểm M thuộc đồ thị hàm số trên thỏa mãn điều kiện điểm M vừa là điểm cực đại của đồ thị hàm số ứng với giá trị này của m đồng thời điểm M vừa là điểm cực tiểu của đồ thị ứng với giá trị khác của m. [ads] + Cho mặt cầu có tâm O và bán kính R. Từ một điểm S bất kỳ trên mặt cầu ta dựng ba cát tuyến bằng nhau, cắt mặt cầu tại các điểm A, B, C ( khác với S) và góc ASB = góc BSC = góc CSA = α. Tính thể tích khối chóp S.ABC theo R và α. Khi α thay đổi, tìm α để thể tích khối chóp S.ABC lớn nhất. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết AB = SD = 3a, AD = SB = 4a, đường chéo AC vuông góc với mặt phẳng (SBD). Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng BD và SA.
Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Hưng Yên
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Hưng Yên Bản PDF Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề bao gồm kiến thức Toán lớp 10, 11 và 12, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh : + Cho hình lăng trụ tam giác đều ABC.A’B’C′ có độ dài cạnh đáy bằng 2a, góc giữa mặt phẳng (A’BC) và mặt phẳng đáy bằng 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh BC và CC′. Tính khoảng cách giữa hai đường thẳng A’M và AN theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a. Mặt bên (SAB) là tam giác cân tại S và vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng a√6/3. Tính thể tích khối chóp S.ABCD theo a. + Cho hàm số y = x^3 – 3x^2 + (m + 1)x – 4, m là tham số. Tìm các giá trị của m để đồ thị hàm số có 2 điểm cực trị và khoảng cách từ điểm A(7/2;1) đến đường thẳng đi qua hai điểm cực trị đó lớn nhất.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho các số thực không âm abc thỏa mãn abc 1. Tìm giá trị lớn nhất của biểu thức P ab ac bc 3 5. + Có 20 người xếp thành một vòng tròn. Hỏi có bao nhiêu cách chọn ra 5 người sao cho không có hai người kề nhau được chọn. + Cho hình lăng trụ ABCD A B C D có đáy ABCD là hình thoi. Hình chiếu vuông góc của A’ lên (ABCD) là trọng tâm của tam giác ABD. Biết AB a 0 ABC 120 AA a. Tính thể tích khối lăng trụ ABCD A B C D theo a.
Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề thi chọn HSG Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm