Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 12 môn Toán năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình

Nội dung Đề kiểm tra lớp 12 môn Toán năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình Bản PDF Sytu giới thiệu đến các em học sinh lớp 12 đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình, nhằm giúp các em có thêm đề thi chất lượng, chuẩn cấu trúc, để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình mã đề 131, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm với 4 đáp án để lựa chọn, học sinh có 90 phút để hoàn thành bài thi thử môn Toán, đề thi có đáp án. [ads] Trích dẫn đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình : + Sân vận động Sports Hub (Singapore) là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một elip (E) có trục lớn dài 150 m, trục bé dài 90 m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt elip (E) ở M, N (Hình a) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình b) với MN là một dây cung và góc MIN = 90◦. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? + Cho một quân cờ đứng ở vị trí trung tâm của một bàn cờ 9 × 9 (xem hình vẽ). Biết rằng, mỗi lần di chuyển, quân cờ chỉ di chuyển sang ô có cùng một cạnh với ô đang đứng. Tính xác suất để sau bốn lần di chuyển, quân cờ không trở về đúng vị trí ban đầu. + Trong không gian Oxyz cho mặt cầu (S) có phương trình x^2 + y^2 + z^2 − 4x + 2y − 2z − 3 = 0 và điểm A(5; 3;−2). Một đường thẳng d thay đổi luôn đi qua A và luôn cắt mặt cầu tại hai điểm phân biệt M, N. Tính giá trị nhỏ nhất của biểu thức S = AM + 4AN.

Nguồn: sytu.vn

Đọc Sách

Đề thi công bằng học kì 1 (HK1) lớp 12 môn Toán năm học 2018 2019 trường THPT chuyên KHTN Hà Nội
Nội dung Đề thi công bằng học kì 1 (HK1) lớp 12 môn Toán năm học 2018 2019 trường THPT chuyên KHTN Hà Nội Bản PDF Đề thi công bằng học kỳ 1 Toán lớp 12 năm học 2018 – 2019 trường THPT chuyên KHTN – Hà Nội được biên soạn theo hình thức tự luận với 4 bài toán, thời gian làm bài 90 phút, kiến thức trong đề gồm các chủ đề: hàm số và đồ thị, mũ và logarit, số phức, phương pháp tọa độ trong không gian Oxyz. Trích dẫn đề thi công bằng học kỳ 1 Toán lớp 12 năm học 2018 – 2019 trường THPT chuyên KHTN – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) biết rằng (P) cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho A, B, C lập thành một tam giác có trọng tâm G(2:3;1). + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x^4 + 2mx^2 – m^2 – m cắt trục hoành tại bốn điểm phân biệt. + Với các số phức z thỏa mãn |z – 2 – 3i| =1, tìm giá trị lớn nhất của biểu thức P = |z – 1| + |z + 1 – 2i|.
Đề thi khảo sát lớp 12 môn Toán năm học 2018 2019 trường THPT Minh Châu Hưng Yên
Nội dung Đề thi khảo sát lớp 12 môn Toán năm học 2018 2019 trường THPT Minh Châu Hưng Yên Bản PDF Đề thi khảo sát Toán lớp 12 năm học 2018 – 2019 trường THPT Minh Châu – Hưng Yên mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, nội dung đề chứa kiến thức Toán lớp 10, Toán lớp 11 và Toán lớp 12 đã học nhằm kiểm tra kiến thức định kỳ của học sinh đồng thời giúp học sinh ôn tập sớm để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019, đề thi có đáp án. Trích dẫn đề thi khảo sát Toán lớp 12 năm học 2018 – 2019 trường THPT Minh Châu – Hưng Yên : + Cho hàm số y = f(x) có tập xác định là R và lim f(x) = y0 khi x → -∞. Tìm kết luận đúng trong các kết luận sau. A. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = y0. B. Đồ thị hàm số có tiệm cận ngang là đường thẳng y = y0. C. Đồ thị hàm số không có tiệm cận. D. Đồ thị hàm số có cả tiệm cận đứng, tiệm cận ngang. [ads] + Trong mặt phẳng Oxy cho có phương trình các đường thẳng AB, AC lần lượt là 3x – y + 8 = 0 và x + y – 4 = 0. Đường tròn đi qua trung điểm các đoạn thẳng HA, HB, HC có phương trình là: x^2 + (y – 1/2)^2 = 25/4, trong đó H (a;b) là trực tâm tam giác ABC và xC < 5. Tính giá trị của biểu thức P = a + b. + Khẳng định nào sau đây đúng? A. Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều. B. Hình lăng trụ đứng là hình lăng trụ đều. C. Hình lăng trụ có đáy là một đa giác đều là hình lăng trụ đều. D. Hình lăng trụ tứ giác đều là hình lập phương. File WORD (dành cho quý thầy, cô):
Đề thi tháng 9 năm 2018 lớp 12 môn Toán trường THPT chuyên Bắc Giang
Nội dung Đề thi tháng 9 năm 2018 lớp 12 môn Toán trường THPT chuyên Bắc Giang Bản PDF Đề thi tháng 9 năm 2018 môn Toán lớp 12 trường THPT chuyên Bắc Giang mã đề 341 được biên soạn nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 12, đồng thời tạo điều kiện để các em rèn luyện thường xuyên hướng đến kỳ thi THPT Quốc gia năm 2019. Đề gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, nội dung đề gồm chương trình Toán lớp 10, Toán lớp 11 và Toán lớp 12 theo như định hướng của Bộ GD và ĐT cho kỳ thi THPTQG năm nay. Kỳ thi được tổ chức tại trường THPT chuyên Bắc Giang (tỉnh Bắc Giang) vào ngày 23 tháng 09 năm 2018. Trích dẫn đề thi tháng 9 năm 2018 môn Toán lớp 12 trường THPT chuyên Bắc Giang : + Cho hàm số phù hợp với bảng biến thiên sau. Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên khoảng (-∞;-1) ∪ (1;+∞) và nghịch biến trên (-1;0) ∪ (0;1). B. Hàm số đồng biến trên hai khoảng (-∞;-1), (11;+∞) và nghịch biến trên khoảng (-1;11). C. Hàm số đồng biến trên hai khoảng (-∞;-1), (1;+∞) và nghịch biến trên (-1;1). D. Hàm số đồng biến trên hai khoảng (-∞;-1), (1;+∞) và nghịch biến trên hai khoảng (-1;0), (0;1). + Khi sản xuất vỏ lon sữa bò hình trụ các nhà thiết kế đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ hộp ít nhất (diện tích toàn phần của lon nhỏ nhất). Bán kính đáy của vỏ lon là bao nhiều khi muốn thể tích của lon là 314cm^3. + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 8,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập làm vốn ban đầu để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm, người đó được lĩnh số tiền không ít hơn 80 triệu đồng (cả vốn ban đầu và lãi), biết rằng trong suốt thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Đề thi KSCL lớp 12 môn Toán năm học 2018 2019 trường Thuận Thành 3 Bắc Ninh lần 1
Nội dung Đề thi KSCL lớp 12 môn Toán năm học 2018 2019 trường Thuận Thành 3 Bắc Ninh lần 1 Bản PDF Đề thi KSCL Toán lớp 12 năm học 2018 – 2019 trường Thuận Thành 3 – Bắc Ninh lần 1 mã đề 132 gồm 5 trang với 50 câu hỏi trắc nghiệm, học sinh làm bài trong 90 phút, đề thi nhằm kiểm tra lại các