Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Đặng Tấn Tài - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Đặng Tấn Tài, thành phố Thủ Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Đặng Tấn Tài – TP HCM : + Theo âm lịch, một chu kì quay của Mặt Trăng quanh Trái Đất là khoảng 29,53 ngày nên một năm âm lịch chỉ có khoảng 354 ngày (làm tròn). Do vậy, cứ sau một vài năm âm lịch thì người ta phải bổ sung một tháng (tháng nhuận) để đảm bảo năm âm lịch tương đối phù hợp với chu kì của thời tiết. Cách tính năm nhuận âm lịch như sau: Lấy số năm chia cho 19, nếu số dư là một trong các số: 0; 3; 6; 9; 11; 14; 17 thì năm âm lịch đó có tháng nhuận. Ví dụ: Năm 2017 là năm âm lịch có tháng nhuận vì 2017 chia 19 dư 3. Năm 2015 không phải năm nhuận âm lịch vì 2015 chia cho 19 dư 1.a) Hãy sử dụng quy tắc trên để xác định năm 1995 và năm 2030 có phải năm nhuận âm lịch hay không? b) Năm nhuận dương lịch là năm chia hết cho 4. Ngoài ra, những năm chia hết cho 100 chỉ được coi là năm nhuận dương lịch nếu chúng cũng chia hết cho 400 (ví dụ 1600 là năm nhuận dương lịch nhưng 1700 không là năm nhuận dương lịch). Hỏi trong các năm từ 1895 đến 1930, năm nào vừa là năm nhuận âm lịch, vừa là năm nhuận dương lịch. + Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Với những độ cao không lớn lắm thì ta có công thức áp suất khí quyển tương ứng với độ cao so với mực nước biển là một hàm số bậc nhất p = a.h + b, trong đó h(m) là độ cao so với mực nước biển, p(mmHg) là áp suất ứng với độ cao h. Biết rằng, tại mặt nước biển thì áp suất là 760mmHg và cứ lên cao 100m thì áp suất giảm 8mmHg. a) Xác định hệ số a và b. b) Thành phố Đà Lạt cao 1500m so với mực nước biển thì áp suất khí quyển tại Đà Lạt là bao nhiêu? + Lớp 9A dự định tổ chức liên hoan lớp cuối năm, trong phần nước uống cần chuẩn bị 42 ly trà sữa truyền thống. Để tiết kiệm chi phí lớp 9A đã tìm hiểu giá của hai cửa hàng A và B như sau: cửa hàng A, mua năm ly đồ uống bất kì thì sẽ được tặng một ly (cùng loại) và nếu hóa đơn trên 400000 đồng thì được giảm thêm 10% trên hóa đơn. Cửa hàng B chỉ khuyến mãi khi đặt hàng qua app GF thì sẽ được giảm 10% mỗi ly khi mua 3 ly trở lên và nếu mua từ 10 ly trở lên thì giảm 25% mỗi ly so với giá niêm yết và phí giao hàng thì khách hàng trả theo khoảng cách từ cửa hàng đến nơi nhận hàng. Hỏi Lớp 9A nên mua ở cửa hàng nào sẽ tiết kiệm hơn và tiết kiệm hơn được bao nhiêu tiền? Biết giá niêm yết một ly trà sữa truyền thống ở cả hai cửa hàng là như nhau và đều là 30000 đồng, khoảng cách từ địa điểm liên hoan đến cửa hàng B là 2,3km. Phí giao hàng được tính theo bảng sau: Khoảng cách Giá tiền (đồng) Dưới 10 km 25000 Từ 10km đến 20km 27500 Từ 20km đến 40km 30000 Trên 40km 5% giá trị đơn hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Hà Nam Đề thi tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Hà Nam Vào ngày... tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Hà Nam đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề thi cho môn Toán của Sở GD&ĐT Hà Nam bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, đề thi đi kèm với đáp án và lời giải chi tiết. Một trong những bài toán trong đề thi đó là: Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O;R). Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC tại D và cắt đường tròn (O;R) tại điểm thứ hai là M. Cần chứng minh các điều sau: Chứng minh tứ giác AEHF nội tiếp. Chứng minh BC là tia phân giác của EBM. Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE. Chứng minh OA vuông góc EF. Xác định vị trí của điểm A để tổng DE + EF + FD đạt giá trị lớn nhất. Bên cạnh đó còn có các bài toán khác như rút gọn biểu thức, tìm giá trị của biểu thức và chứng minh bất đẳng thức với ba số dương abc = 1. Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Hà Nam là cơ hội để các học sinh thể hiện năng lực và kiến thức của mình trong môn Toán. Hy vọng rằng các em sẽ hoàn thành tốt kỳ thi và chinh phục được những thử thách của bài thi.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thái Bình
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi Tuyển sinh THPT môn Toán năm 2020 - 2021 Sở GD&ĐT Thái Bình Đề thi Tuyển sinh THPT môn Toán năm 2020 - 2021 Sở GD&ĐT Thái Bình Vào ngày … tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Thái Bình đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, trong đó có đáp án và lời giải chi tiết để học sinh tham khảo sau khi làm bài. Trích dẫn một phần nội dung trong đề thi Tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của Sở GD&ĐT Thái Bình: Đề bài yêu cầu học sinh chứng minh rằng tứ giác MAOB nội tiếp và MO vuông góc với AB, đồng thời giải các câu hỏi liên quan đến điểm đặc biệt trên đường tròn đường kính chứa điểm M nằm ngoài vòng tròn đó. Bài toán đã đưa ra những yếu tố hóc búa khiến học sinh phải áp dụng kiến thức và kỹ năng tính toán một cách logic và chính xác. Dấn thêm vào đó, việc giải quyết các bài toán như vậy không chỉ giúp học sinh rèn luyện tư duy logic mà còn giúp họ phát triển khả năng giải quyết vấn đề theo hướng phân tích và suy luận. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của Sở GD&ĐT Thái Bình là một cơ hội để học sinh thể hiện năng lực và kiến thức của mình trước một bài kiểm tra đầy thách thức, từ đó hướng tới sự thành công trong học tập và sự nghiệp sau này.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Ninh Bình Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Ninh Bình Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 - 2021. Đề thi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề thi: 1. Người ta đổ thêm 20 gam nước vào một dung dịch chứa 4 gam muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu gam nước? 2. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp đường tròn. b) Chứng minh rằng AF.AB = AE.AC. c) Kẻ đường kính AD của đường tròn tâm O. Chứng minh tứ giác BHCD là hình bình hành. 3. Một chiếc máy bay bay lên từ mặt đất với vận tốc 600km/h. Đường bay tạo với phương nằm ngang một góc 30 độ. Sau 1,5 phút máy bay lên cao được bao nhiêu kilômét theo phương thẳng đứng? Đây là một số câu hỏi thú vị trong đề thi tuyển sinh môn Toán của Sở GD&ĐT Ninh Bình năm 2020 - 2021. Chúc các thí sinh đạt kết quả tốt trong kỳ thi!
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Phú Thọ
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Phú Thọ Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Phú Thọ Vào ngày thứ ... ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Phú Thọ bao gồm 02 trang với 10 câu hỏi trắc nghiệm và 04 câu hỏi tự luận. Thời gian làm bài thi của học sinh là 120 phút. Một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Phú Thọ: + Trong hình vuông ABCD nội tiếp đường tròn tâm O, gọi M, N lần lượt là trung điểm của BC và CD. Đường thẳng AM, BN cắt đường tròn tại E, F. Tính số đo của góc EDF. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Tia phân giác góc BAC cắt cạnh BC tại D và cắt đường tròn (O) tại M. Gọi K là hình chiếu của M lên AB. T là hình chiếu của M lên AC. Chứng minh rằng: a. AKMT là tứ giác nội tiếp. b. MB^2 = MC^2 = MD.MA. c. Tổng AB/MK + AC/MT là không đổi khi A di chuyển trên cung lớn BC. + Giải phương trình x^2 - 2mx + m - 1 = 0 với tham số m. a. Tìm nghiệm khi m = 2. b. Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. c. Tìm m sao cho x1^2.x2 + mx2 - x1 = 4 với x1, x2 là hai nghiệm của phương trình. Nội dung trên là một phần của đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020-2021, mang đến cho học sinh cơ hội thể hiện kiến thức và kỹ năng giải bài toán của mình. Chúc các em thành công trong kỳ thi sắp tới!