Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán lần 1 năm 2023 2024 trường THCS Đắk Ơ Bình Phước

Nội dung Đề thi HSG lớp 9 môn Toán lần 1 năm 2023 2024 trường THCS Đắk Ơ Bình Phước Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ Bình Phước Đề thi HSG Toán lớp 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ Bình Phước Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đọc đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 lần 1 năm học 2023 - 2024 tại trường THCS Đắk Ơ, huyện Bù Gia Mập, tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào ngày 10 tháng 10 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: - Xác định vị trí của 4 điểm C, H, O, I trên đường tròn và chứng minh chúng cùng thuộc một đường tròn. - Chứng minh rằng MC là tiếp tuyến của đường tròn. - Chứng minh K là trung điểm của đoạn thẳng CH. Đối với câu hỏi về tam giác đều ABC, cần chứng minh mối quan hệ giữa các đoạn thẳng AB, AJ, BI khi IKJ là tam giác đều. Để tăng cường kiến thức và kỹ năng Toán của các em học sinh, đề thi cũng bao gồm một bài toán về phép tính với các số thực dương, giúp rèn luyện logic và sự tư duy của các em. Mong rằng đề thi sẽ giúp các em học sinh lớp 9 trường THCS Đắk Ơ Bình Phước tự tin và thành công trong kỳ thi HSG. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Nghệ An : + Cho đường tròn (O;R) cố định và điểm A cố định nằm ngoài đường tròn (O;R). Từ điểm A vẽ hai tiếp tuyến AB, AC tới đường tròn (O;R) (B, C là các tiếp điểm). Qua A vẽ đường thẳng cố định cắt đường tròn (O;R) tại hai điểm phân biệt I và E (I nằm giữa hai điểm A, E và EBC < 90°). Gọi H là giao điểm của AO và BC. Qua H vẽ đường thẳng (d) song song với BE, biết (d) cắt các đường thẳng BI, BA lần lượt tại Q và N. a) Chứng minh rằng BI/BE = CI/CE. b) Chứng minh rằng Q là trung điểm của NH. c) Vẽ đường tròn (P;R1) thay đổi nhưng luôn đi qua hai điểm I và E. Từ A vẽ hai tiếp tuyến AD, AJ với đường tròn (P;R1) (D, J là các tiếp điểm). Chứng minh đường thẳng DJ luôn đi qua một điểm cố định. + Trong phòng có 121 người, biết mỗi người quen với ít nhất 81 người khác. Chứng minh rằng trong phòng phải có 4 người từng đôi một quen nhau.
Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 - 2024 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Sơn La : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1;3), parabol (P) và đường thẳng (d) có phương trình lần lượt là: y = x2 và y = ax + 3 – a. a) Chứng minh rằng với mọi giá trị của a đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Giả sử B và C là hai giao điểm của (d) và (P). Tìm a để AB = 2AC. + Cho đường tròn (O;R) và dây cung BC = R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng với A). Gọi H là giao điểm của BE và CF. a) Chứng minh KA là đường phân giác trong của góc BKC. b) Chứng minh tứ giác BHCK nội tiếp. c) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính điện tích lớn nhất của tứ giác đó theo R. d) Chứng minh đường thẳng AK luôn đi qua một điểm cố định.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy, cho điểm M(3; 5). Lập phương trình đường thẳng d đi qua M và cắt các tia Ox, Oy tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 30 (đvdt). + Cho tam giác nhọn ABC có H, G lần lượt là trực tâm, trọng tâm và HG song song với BC. Tính tan B·tan C. + Cho nửa đường tròn tâm O đường kính AB. Lấy điểm H cố định thuộc đoạn thẳng OA (H không trùng với O và A). Đường thẳng vuông góc với AB tại H cắt nửa đường tròn tâm O tại C. Gọi D là điểm đối xứng với A qua C; I, J lần lượt là trung điểm của CH và DH. a) Chứng minh hai tam giác CHJ và HBI đồng dạng. b) Gọi Bx là tia tiếp tuyến của nửa đường tròn tâm O. Lấy điểm E di động trên Bx (E không trùng với B). Đường thẳng qua H vuông góc với AE cắt đường thẳng BE tại F. Chứng minh đường tròn đường kính EF luôn đi qua hai điểm cố định khi E di động trên tia Bx.
Đề học sinh giỏi Toán 9 cấp thành phố năm 2023 - 2024 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Đà Nẵng. Trích dẫn Đề học sinh giỏi Toán 9 cấp thành phố năm 2023 – 2024 sở GD&ĐT Đà Nẵng : + Trên mặt phẳng tọa độ, cho đường thẳng y = mx – 2m + 4 (d) với m là tham số và O là gốc tọa độ. a) Tìm toạ độ điểm A cố định mà đường thẳng (d) luôn đi qua với mọi m. b) Với mỗi giá trị của m, gọi R là bán kính của đường tròn tâm O tiếp xúc (d). Tìm m để bán kính R lớn nhất. + Cho tam giác ABC vuông tại A nội tiếp đường tròn (O). Lấy điểm M bất kì trên cạnh AC (M khác A và C) và gọi D là trung điểm của đoạn thẳng MC. Tia BM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng khi M thay đổi, đường thẳng DE luôn tiếp xúc với một đường tròn cố định. + Trong một cuộc thi. Giám khảo giao nhiệm vụ cho đội của hai bạn Giáp và Thìn như sau: “Bạn Giáp nghĩ và viết ra giấy bảy số tự nhiên khác nhau có tổng bằng 2024, bí mật gửi cho Giám khảo và chỉ nói với bạn Thìn số lớn thứ tư trong bảy số này. Sau đó bạn Thìn phải đoán ra tất cả các số bạn Giáp đã viết”. Hỏi bạn Giáp phải viết ra những số nào để đội của các bạn Giáp, Thìn thắng trong cuộc thi đó? Vì sao?