Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2023 - 2024 sở GDĐT Quảng Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 03 tháng 05 năm 2024; đề thi có đáp án trắc nghiệm tất cả các mã đề. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2023 – 2024 sở GD&ĐT Quảng Ninh : + Từ một khối gỗ hình lăng trụ đứng ABC A B C có AB BC 30 cm 40 cm AC 50 cm AA 300 cm người ta muốn làm một cây cột hình trụ tròn xoay có chiều cao bằng chiều cao ban đầu của khối gỗ và đường kính lớn nhất. Tính khối lượng của cây cột (đơn vị kg) biết rằng khối lượng riêng của gỗ là 3 1100 kg/m (làm tròn đến hàng đơn vị). + Xét các số x y không âm thỏa mãn 2 3 y x y. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của 2 2 P y y x m 15 50 36 không vượt quá 44. Số các phần tử thuộc tập S là? + Trong không gian Oxyz cho hình nón có đỉnh S(1;2;3), A(2;2;3) và B(1;4;3) là các điểm thuộc các đường sinh của hình nón điểm C(1;2;6) nằm trên đường tròn đáy. Diện tích xung quanh của hình nón là?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 đợt 1 năm 2020 - 2021 sở GDĐT Nghệ An
Chiều thứ Bảy ngày 30 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng môn Toán 12 kết hợp thi thử tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2020 – 2021 đợt thứ nhất. Đề khảo sát chất lượng Toán 12 đợt 1 năm 2020 – 2021 sở GD&ĐT Nghệ An gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 đợt 1 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Một loại kẹo có hình dạng là khối cầu với bán kính bằng 1 cm được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất, tính tổng diện tích tất cả các mặt của vỏ kẹo. + Người ta thiết kế 1 cái ly thủy tinh dùng để uống nước có dạng hình trụ như hình vẽ, biết rằng ở mặt ngoài ly có chiều cao là 15 cm và đường kính đáy là 8 cm, độ dày thành ly là 2 mm, độ dày đáy là 1 cm . Hãy tính thể tích lượng thủy tinh cần để làm nên cái ly đó (kết quả gần đúng nhất). + Cho hình nón có chiều cao là 10a. Một mặt phẳng (P) đi qua đỉnh S của hình nón và cắt đường tròn đáy tại hai điểm A, B sao cho tam giác SAB có diện tích bằng 40a^2.√23/3. Biết rằng góc giữa mặt phẳng (P) và mặt đáy của hình nón là 60 độ. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng?
Đề đánh giá chất lượng Toán 12 lần 1 năm 2020 - 2021 trường chuyên KHTN - Hà Nội
Chủ Nhật ngày 17 tháng 01 năm 2021, trường THPT chuyên KHTN, Đại học KHTN, Đại học Quốc gia Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh khối 12 năm học 2020 – 2021 lần thứ nhất. Đề đánh giá chất lượng Toán 12 lần 1 năm 2020 – 2021 trường chuyên KHTN – Hà Nội được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 132. Trích dẫn đề đánh giá chất lượng Toán 12 lần 1 năm 2020 – 2021 trường chuyên KHTN – Hà Nội : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 3a, góc SAB = SCB = 90 độ và khoảng cách từ A đến mặt phẳng (SBC) bằng a√6. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC theo a. + Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;2), B(1;1;3), C(3;2;0) và mặt phẳng (P): x + 2y – 2z + 1 = 0. Biết rằng điểm M(a;b;c) thuộc mặt phẳng (P) sao cho biểu thức MA2 + 2MB2 – MC2 đạt giá trị nhỏ nhất. Khi đó a + b + c bằng? + Cho hàm số y = x3 – mx2 – m2x + 8. Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?
Đề thi định kỳ Toán 12 lần 1 năm 2020 - 2021 trường Việt Yên 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi định kỳ Toán 12 lần 1 năm học 2020 – 2021 trường THPT Việt Yên số 1, tỉnh Bắc Giang; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, đề gồm có 05 trang, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124. Trích dẫn đề thi định kỳ Toán 12 lần 1 năm 2020 – 2021 trường Việt Yên 1 – Bắc Giang : + Cắt khối lăng trụ ABC.A’B’C’ bởi các mặt phẳng (AB’C’) và (ABC’) ta được những khối đa diện nào? A. Hai khối tứ diện và hai khối chóp tứ giác. B. Ba khối tứ diện. C. Hai khối tứ diện và một khối chóp tứ giác. D. Một khối tứ diện và hai khối chóp tứ giác. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân, AB = BC = 2a. Tam giác A’AC cân tại A’ và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích của khối lăng trụ ABC.A’B’C’ bằng 2a3. Tính khoảng cách giữa hai đường thẳng AB và CC’. + Cho tập hợp A có 7 phần tử. Hỏi tập A có bao nhiêu tập con có nhiều hơn một phần tử?
Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường THPT chuyên Thái Bình
Ngày … tháng 01 năm 2021, trường THPT chuyên Thái Bình, tỉnh Thái Bình tổ chức kỳ thi kiểm tra chất lượng học tập môn Toán 12 năm học 2020 – 2021 lần thứ hai, nhằm giúp học sinh khối 12 rèn luyện kiến thức thường xuyên để hướng đến kỳ thi tốt nghiệp THPT Quốc gia 2021 môn Toán. Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình mã đề 366 gồm 06 trang, đề được biên soạn theo hình thức đề thi 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình : + Ông An muốn xây một bể chứa nước dạng hình hộp chữ nhật, phần nắp trên ông để trống một ô có diện tích bằng 20% diện tích của đáy bể. Biết đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng, bể có thể tích chứa tối đa 10m3 nước và giá tiền thuê nhân công là 500000 đồng / m2. Số tiền ít nhất mà ông phải trả cho nhân công gần nhất với đáp án nào dưới đây? + Cho hai khối cầu đồng tâm có bán kính là 1 và 4. Xét hình chóp S.A1A2A3A4A5A6 có đỉnh S thuộc mặt cầu nhỏ và các đỉnh Ai (i = 1..6) thuộc mặt cầu lớn. Tìm giá trị lớn nhất của thể tích khối chóp S.A1A2A3A4A5A6. + Một nhóm học sinh trường THPT chuyên Thái Bình có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.