Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 11 năm học 2019 - 2020 trường THPT Kim Liên - Hà Nội

Thứ Ba ngày 16 tháng 06 năm 2020, trường THPT Kim Liên, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 11 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 11 năm học 2019 – 2020 trường THPT Kim Liên – Hà Nội mã đề 101 gồm có 03 trang, nội dung đề được chia làm 02 phần: phần trắc nghiệm gồm có 20 câu, chiếm 05 điểm, học sinh làm bài trong 45 phút; phần tự luận gồm có 03 câu, chiếm 05 điểm, học sinh làm bài trong 45 phút; đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi học kỳ 2 Toán 11 năm học 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Bảo tàng Hà Nội được xây dựng gồm hai tầng hầm và bốn tầng nổi. Bốn tầng nổi được dùng để trưng bày rất nhiều những hiện vật có giá trị. Diện tích sàn tầng nổi thứ nhất xấp xỉ 12 000 m2. Biết rằng mỗi tầng nổi tiếp theo có diện tích bằng 4/3 diện tích tầng nổi ngay dưới nó. Tính tổng diện tích mặt sàn của bốn tầng nổi dùng để trưng bày hiện vật của bảo tàng (làm tròn đến hàng đơn vị). + Tổng ba số hạng liên tiếp của một cấp số cộng bằng 45. Nếu bớt 6 đơn vị ở số hạng thứ hai và giữ nguyên các số còn lại thì được một cấp số nhân. Tìm ba số đó. [ads] + Cho hình chóp S.ABC có SA vuông góc với (ABC), đáy ABC là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng? A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC). B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC). C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB). D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tính đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến của (C): 2 1 3 x y x biết tiếp tuyến song song với đường thẳng 1 : 1 7 d. + Viết phương trình tiếp tuyến với đồ thị hàm số 3 2 y x 3x tại điểm có hoành độ bằng -1.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc và gia tốc của vật tại thời điểm t s. + Cho hàm số có đồ thị C. Viết phương trình tiếp tuyến của đồ thị C, biết tiếp tuyến song song đường thẳng d y x 9 6. + Chứng minh phương trình 2 4 m m x x 2 6 2 0 luôn có nghiệm với mọi giá trị thực của tham số m.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA a 3 và SA ABCD. a. Chứng minh BC SAB. b. Chứng minh SCD SAD. c. Tính góc giữa đường thẳng SO và mặt phẳng (ABCD). d. Tính khoảng cách từ điểm A đến mặt phẳng (SBD). + Cho hàm số 3 2 y x x x 3 7 2 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến song song với đường thẳng 4 2020 y x. + Tính đạo hàm của các hàm số sau.