Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Đồng Khởi - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đồng Khởi, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Đồng Khởi – TP HCM : + Cho parabol (P): y = 1 2 x 2 và đường thẳng (d): y = −x + 4 a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. ĐS: (2; 2) và (−4; 8) c) Tìm tọa độ điểm N thuộc (P) (N khác gốc tọa độ) có tung độ gấp ba lần hoành độ. ĐS: N (6; 18). + Để tặng thưởng cho các học sinh đạt thành tích cao trong kì thi học sinh giỏi cấp thành phố. Trường THCS Đồng Khởi đã trao 32 phần thưởng cho các học sinh với tổng giải thưởng là 31300000 đồng, bao gồm mỗi học sinh đạt nhất được thưởng 1500000 đồng; mỗi học sinh đạt giải nhì được thưởng 1000000 đồng; mỗi học sinh đạt giải ba được thưởng 700000 đồng; mỗi học sinh đạt giải khuyến khích được thưởng 300000 đồng (học sinh đạt giải khuyến khích là những em chỉ chỉ đạt học sinh giỏi vòng 2 cấp quận nhưng không đạt học sinh giỏi cấp thành phố). Biết rằng có 8 giải ba và 4 giải khuyến khích được trao. Hỏi có bao nhiêu giải nhất và giải nhì được trao? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Ba đường cao AK, BM, CN cắt nhau tại H. a) Chứng minh các tứ giác AMHN và BCMN nội tiếp. b) Kẻ đường kính AD của đường tròn (O). AD cắt MN tại I. Chứng minh AB · AC = AD · AK và AD ⊥ MN. c) Tia MN cắt BC tại E; AD cắt BC tại F. Chứng minh AI · AF + KE · KF = AK2.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát giữa kỳ 2 Toán 9 năm 2019 - 2020 trường THCS Gia Khánh - Vĩnh Phúc
Đề khảo sát giữa kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Gia Khánh – Vĩnh Phúc gồm 04 câu trắc nghiệm (02 điểm) và 04 câu tự luận (08 điểm), thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án trắc nghiệm và hướng dẫn chấm tự luận. Trích dẫn đề khảo sát giữa kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Gia Khánh – Vĩnh Phúc : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai xe lửa khởi hành đồng thời từ hai ga cách nhau 750 km và đi ngược chiều nhau, sau 10 giờ chúng gặp nhau. Nếu xe thứ nhất khởi hành trước xe thứ hai 3 giờ 45 phút thì sau khi xe thứ hai đi được 8 giờ chúng gặp nhau. Tính vận tốc của mỗi xe. + Cho ABC nhọn nội tiếp đường tròn (O), hai đường cao BM, CN của ABC cắt nhau tại H. Chứng minh: a) Tứ giác BCMN nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác BCMN. b) AMN ∽ ABC c) Tia AO cắt đường tròn (O) tại K. Chứng minh: Tứ giác BHCK là hình bình hành. + Cho biểu thức M = 2 2 2 2 x y z t 2 với x y z t N. Tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x y z t biết rằng: 2 2 2 2 2 2 21 3 4 101.
Đề kiểm tra giữa HK2 Toán 9 năm 2018 - 2019 trường chuyên Hà Nội - Amsterdam
Đề kiểm tra giữa HK2 Toán 9 năm 2018 – 2019 trường THPT chuyên Hà Nội – Amsterdam được biên soạn nhằm kiểm tra lại các chủ đề Toán 9 mà học sinh đã học: giải hệ phương trình, giải toán bằng cách lập hệ phương trình, bài toán đường tròn, tìm giá trị lớn nhất và nhỏ nhất của biểu thức. Trích dẫn đề kiểm tra giữa HK2 Toán 9 năm 2018 – 2019 trường THPT chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập hệ phương trình: Một nhóm gồm 15 học sinh nam và nữ, tham gia buổi lao động trồng cây. Cuối buổi lao động, thầy giáo nhận thấy các bạn nam trồng được 30 cây, các bạn nữ trồng được 36 cây. Mỗi bạn nam trồng được số cây như nhau và môi bạn nữ trồng được số cây như nhau. Tính số học sinh nam và số học sinh nữ của nhóm, biết rằng mỗi bạn nam trồng được nhiều hơn mỗi bạn nữ 1 cây. [ads] + Cho tam giác ABC (AB < AC) nhọn nội tiếp đường tròn tâm O. Trên cạnh BC lần lượt lấy hai điểm D và E (D nằm giữa B và E) sao cho DAB = EAC. Các tia AD và AE tương ứng cắt lại đường trong (O) tại I và J. a) Chứng minh rằng phân giác của góc BAC đi qua điểm chính giữa của cung nhỏ IJ của đường tròn (O). b) Chứng minh rằng: Tứ giác BCJI là hình thang cân. c) Kẻ tiếp tuyến xy của đường tròn (O) tại điểm A. Chứng minh rằng đường thẳng xy cũng là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE. + Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2 – 3ab.
Đề kiểm tra giữa HK2 Toán 9 năm 2017 - 2018 phòng GD và ĐT Quận Tây Hồ - Hà Nội
Đề kiểm tra giữa HK2 Toán 9 năm 2017 – 2018 phòng GD và ĐT Quận Tây Hồ – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 9, đồng thời giúp các em ôn luyện chuẩn bị cho kỳ thi tuyển sính vào lớp 10 môn Toán năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra giữa HK2 Toán 9 : + Theo kế hoạch hai tổ được giao sản xuât 600 sản phẩm trong một thời gian đã định. Do cải tiến kỹ thuật nên tôt I đã sản xuất vượt mức kế hoạch 18% và tổ II sản xuất vượt mức kế hoạch 21%. Vì vậy trong cùng một thời gian quy định hai tổ đã hoàn thành vượt mức 120 sản phẩm. Tính số sản phẩm được giao của mỗi tổ theo kế hoạch. [ads] + Cho đường tròn (O;R). Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Từ B kẻ đường thẳng song song với AC cắt (O) tại D (D khác B), đường thẳng AD cắt (O) tại E (E khác D). a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh: AE.AD = AB^2. c) Chứng minh góc CEA = BEC. d) Giả sử OA = 3R. Tính khoảng cách giữa hai đường thẳng AC và BD theo R.