Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chung) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu

Nội dung Đề thi vào 10 môn Toán (chung) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu Bản PDF Đề thi vào lớp 10 môn Toán (chung) năm học 2020 - 2021 của trường chuyên Lê Quý Đôn - Lai Châu là một đề thi khá thú vị và đầy thách thức. Đề thi gồm 6 bài toán dạng tự luận, đòi hỏi học sinh phải có kiến thức sâu và khả năng suy luận logic tốt. Thời gian làm bài là 150 phút, cho phép học sinh có đủ thời gian để làm bài một cách cẩn thận và chính xác.

Trong đề thi có những câu hỏi khá phức tạp như việc chứng minh tứ giác nội tiếp, tính toán vận tốc ban đầu của ô tô, hoặc tìm giá trị lớn nhất của biểu thức sinh học. Những bài toán như vậy không chỉ đòi hỏi kiến thức vững chắc mà còn cần có sự tỉ mỉ và khéo léo trong việc suy luận và tính toán.

Việc giải quyết đề thi này không chỉ là việc thử thách kiến thức và khả năng của học sinh mà còn giúp họ rèn luyện kỹ năng tư duy logic và khả năng xử lý vấn đề. Với một đề thi như vậy, học sinh sẽ có cơ hội thể hiện khả năng và kiến thức của mình một cách toàn diện và nâng cao kỹ năng tự học và tự giải quyết vấn đề.

Cuối cùng, việc học sinh giải quyết thành công đề thi này không chỉ là để đạt điểm cao mà còn là để phát triển bản thân và chuẩn bị cho những thách thức trong tương lai. Chúc các em học sinh may mắn và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT TP. HCM
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT TP. HCM được biên soạn theo hình thức tự luận với 8 bài toán, thí sinh làm bài trong thời gian 120 phút, kỳ thi được tổ chức vào ngày 03/06/2018 nhằm đánh giá và phân loại năng lực học Toán của các em học sinh khối lớp 9, để từ đó các trường THPT trên địa bàn Thành phố Hồ Chí Minh có cơ sở để tuyển sinh theo chỉ tiêu của mỗi trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 năm 2018 - 2019 môn Toán chuyên Lê Quý Đôn - Bình Định
Đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán chuyên Lê Quý Đôn – Bình Định : + Một người dự định đi từ A đến B cách nhau 120 km bằng xe máy với vận tốc không đổi để đến B vào thời điểm định trước. Sau khi đi được 1 giờ người đó nghỉ 10 phút, do đó để đến B đúng thời điểm đã định, người đó phải tăng vận tốc thêm 6km/ giờ so với vận tốc ban đầu trên quãng đường còn lại. Tính vận tốc ban đầu của người đó. [ads] + Cho tam giác ABC (AB < AC) có các góc đều nhọn nội tiếp trong đường tròn tâm O. AD là đường kính của đường tròn (O), H là trung điểm BC. Tiếp tuyến tại D của (O) cắt đường thẳng BC tại M. Đường thẳng MO cắt AB, AC lần lượt tại E và F. a) Chứng minh :MD^2 = MB.MC. b) Qua B kẻ đường thẳng song song với MO cắt đường thẳng AD tại P. Chứng minh bốn điểm B, H, D, P cùng nằm trên một đường tròn. c) Chứng minh O là trung điểm của EF.
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT Thừa Thiên Huế
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết , lời giải được trình bày bởi quý thầy (cô) giáo: Thầy Hoàng Đức Vương, Thầy Huỳnh Quang Nhật Minh, Huỳnh Quang Nhật Sinh, Nguyễn Quốc Trung, Võ Thành Phúc, Phan Thành Sơn. Trích dẫn đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 – 2019 sở Thừa Thiên Huế : + Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc. [ads] + Cho tam giác ABC cân tại A. Gọi M là điểm bất kì nằm trên cạnh AC (M không trùng A và C). Một đường thẳng đi qua M cắt cạnh BC tại I và cắt đường thẳng AB tại N sao cho I là trung điểm của đoạn thẳng MN. Đường phân giác trong của góc BAC cắt đường tròn ngoại tiếp tam giác AMN tại điểm D (D không trùng với A). Chứng minh rằng: a) DN = DM và DI ⊥ MN. b) Tứ giác BNDI nội tiếp. c) Đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định (khác điểm A) khi M di chuyển trên cạnh AC.
Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 môn Toán sở GD và ĐT Ninh Bình
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 môn Toán sở GD và ĐT Ninh Bình gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, nội dung kiến thức các câu hỏi trong đề gồm: rút gọn biểu thức, giải hệ phương trình, tìm giá trị của tham số để đồ thị hàm bậc nhất y = ax + b đi qua điểm cho trước, giải và biện luận phương trình bậc hai, giải toán bằng cách lập phương trình hoặc hệ phương trình, bài toán đường tròn, tìm giá trị nhỏ nhất, lớn nhất của biểu thức 2 biến. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2018 – 2019 môn Toán sở Ninh Bình : + Một hình chữ nhật có chu vi bằng 28 cm. Tính chiều dài và chiều rộng của chữ nhật, biết rằng nếu tăng chiều dài thêm 1 cm và tăng chiều rộng thêm 2 cm thì diện tích hình chữ nhật đó tăng thêm 25 cm2. [ads] + Cho phương trình x^2 – mx + m – 4 = 0 (1), (x là ẩn số và m là tham số). a. Giải phương trình (1) khi m = 8. b. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị nguyên dương của m để (5×1 – 1)(5×2 – 1) < 0.