Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số tự nhiên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép cộng số tự nhiên. * Phép cộng hai số tự nhiên a và b cho ta một số tự nhiên c gọi là tổng của chúng. Kí hiệu là a + b = c Số hạng Số hạng Tổng. * Tính chất của phép cộng: + Tính chất giao hoán: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi a b b a. + Tính chất kết hợp: Muốn cộng một tổng hai số với một số thứ ba, ta có thể cộng số thứ nhất với tổng của số thứ hai và số thứ ba a b c a b c a b c. + Tính chất cộng với số 0 a a a 0 0. 2. Phép trừ số tự nhiên. * Với hai số tự nhiên a b đã cho, nếu có số tự nhiên c sao cho a b c thì ta có phép trừ a – b = c. Số bị trừ Số trừ Hiệu. * Chú ý: Trong tập hợp phép trừ a b chỉ thực hiện được nếu a b. 3. Các dạng toán thường gặp. Dạng 1: Thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. Phương pháp: Ta sử dụng khái niệm về phép cộng, phép trừ để thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. * Trong phép cộng: muốn tìm số hạng ta lấy tổng trừ số hạng đã biết. * Trong phép trừ: + Muốn tìm số bị trừ ta lấy hiệu cộng số trừ. + Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. Dạng 2: Áp dụng tính chất của phép cộng, phép trừ vào tính nhanh, giải toán. Phương pháp: Áp dụng một số tính chất sau đây: + Khi cộng nhiều số, ta nên sử dụng tính chất giao hoán, kết hợp để nhóm những số hạng có tổng là số chẵn chục, chẵn trăm (nếu có). + Tổng của hai số không đổi nếu ta thêm vào ở số hạng này và bớt đi ở số hạng kia cùng một số đơn vị. + Hiệu của hai số không đổi nếu ta thêm vào số bị trừ và số trừ cùng một số đơn vị. Nếu tổng là một dãy số có các số hạng cách đều ta có công thức: Số số hạng = (số lớn nhất – số nhỏ nhất): khoảng cách giữa hai số + 1 Tổng = (số lớn nhất + số nhỏ nhất). Số số hạng: 2. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. Dạng 2: Áp dụng tính chất của phép cộng, phép trừ vào tính nhanh, giải toán.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm số đo góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số đo góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Số đo góc. a) Số đo của một góc. Mỗi góc có một số đo góc (đơn vị là độ). Hai tia trùng nhau được coi là góc có số đo bằng 0. Cách đo góc: + Bước 1: Đặt thước đo góc sao cho tâm của thước trùng với đỉnh của góc và một cạnh của góc đi qua vạch số 0 trên thước. + Bước 2: Xem cạnh thứ hai của góc đi qua vạch nào của thước thì đó chính là số đo của góc. Lưu ý: Trên thước có hai hàng số ứng với cung lớn và cung nhỏ. Khi đọc kết quả cần đọc số nằm trên cùng một cung với số 0 mà cạnh thứ nhất đi qua. Nếu hai góc A và B có số đo bằng nhau, ta nói hai góc đó bằng nhau. Ta viết A B. Nếu số đo của góc A nhỏ hơn số đo của góc B thì ta nói góc A nhỏ hơn góc B. Ta viết A B. b) Các loại góc: Góc nhọn Góc vuông Góc tù Góc bẹt. 2. Các dạng toán thường gặp. Dạng 1: Đo góc. Dạng 2: So sánh hai góc. Phương pháp: + Đo các góc cần so sánh. + So sánh số đo của các góc và kết luận của bài toán. Dạng 3: Nhận biết góc vuông, góc nhọn, góc tù, góc bẹt. Phương pháp: Dựa vào số đo của góc để kết luận. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Góc. 1.1. Định nghĩa. Góc là hình gồm hai tia chung gốc. Gốc chung của 2 tia là đỉnh của góc. Hai tia là hai cạnh của góc. – Góc xOy, kí hiệu là xOy; yOx AOB; BOA. – Điểm O là đỉnh của góc. Hai tia Ox; Oy là các cạnh của góc. – Đặc biệt, khi Ox; Oy là hai tia đối nhau, ta có góc bẹt xOy. Chú ý khi viết tên góc: Dùng 3 chữ để viết các góc, chữ ở giữa là đỉnh của góc; hai chữ hai bên cùng với chữ ở giữa là tên của hai tia chung gốc tạo thành hai cạnh của góc. Trên ba chữ của tên góc có kí hiệu. 1.2. Vẽ góc. – Vẽ đỉnh và hai cạnh của góc. 1.3. Điểm trong của góc. – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Nâng cao: Công thức tính số góc khi biết n tia chung gốc 2 n n. B. BÀI TẬP TRẮC NGHIỆM 2. Các dạng toán thường gặp. Dạng 1: Nhận biết góc. Phương pháp giải: Để đọc tên và viết kí hiệu góc, ta làm như sau: Bước 1: Xác định đỉnh và 2 cạnh của góc. Bước 2: Kí hiệu góc và đọc tên. Lưu ý: Một góc có thể gọi bằng nhiều cách. Dạng 2: Xác định các điểm trong của góc cho trước. Phương pháp giải: – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Dạng 3: Đếm góc, tính số góc khi biết số tia và ngược lại. Phương pháp giải: Để đếm góc tạo thành từ n tia chung gốc cho trước, ta thường làm theo các cách sau: Cách 1: Vẽ hình và đếm các góc tao bởi tất cả các tia cho trước. Cách 2: Sử dụng công thức tính số góc khi biết n tia.
Tóm tắt lý thuyết và bài tập trắc nghiệm trung điểm của đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề trung điểm của đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Trung điểm của đoạn thẳng: Định nghĩa: Trung điểm của đoạn thẳng là điểm nằm giữa hai đầu mút của đoạn thẳng và cách đều hai đầu mút đó. Chú ý: Điểm I là trung điểm của đoạn thẳng AB. + Điểm I nằm giữa hai điểm A và B và IA IB. + Hoặc IA IB AB IA IB. + Hoặc 1 2 IA IB AB. 2. Các dạng toán thường gặp. Dạng 1: Tính độ dài đoạn thẳng. Phương pháp: Ta sử dụng: Nếu M là trung điểm của đoạn thẳng AB thì 1 2 MA MB AB. Dạng 2: Chứng tỏ một điểm là trung điểm của đoạn thẳng. Phương pháp: Để chứng tỏ điểm I là trung điểm của đoạn thẳng AB ta có 3 cách. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm đoạn thẳng, độ dài đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề đoạn thẳng, độ dài đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Đoạn thẳng AB là gì? + Đoạn thẳng AB hay đoạn thẳng BA là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. + A, B là hai đầu mút (mút) của đoạn thẳng AB. 2. Độ dài đoạn thẳng. + Mỗi đoạn thẳng có một độ dài. Khi chọn một đơn vị độ dài thì độ dài mỗi đoạn thẳng được biểu diễn bởi một số dương (thường viết kèm đơn vị). + Độ dài đoạn thẳng AB còn gọi là khoảng cách giữa hai điểm A và B. Ta quy ước khoảng cách giữa hai điểm trùng nhau bằng 0 (đơn vị). 3. So sánh độ dài hai đoạn thẳng. + Hai đoạn thẳng AB và EG có cùng độ dài. Ta viết AB EG và nói đoạn thẳng AB bằng đoạn thẳng EG. + Đoạn thẳng AB có độ dài nhỏ hơn đoạn thẳng CD. Ta viết AB CD và nói AB ngắn hơn CD. Hoặc CD AB và nói CD dài hơn AB. 4. Các dạng toán thường gặp. Dạng 1: Nhận biết đoạn thẳng. Phương pháp: Ta sử dụng định nghĩa: Đoạn thẳng AB là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. Dạng 2: Xác định số đoạn thẳng. Phương pháp: Với n điểm phân biệt cho trước n N n 2 thì số đoạn thẳng vẽ được là 1 2 n n. Dạng 3: Tính độ dài đoạn thẳng. So sánh hai đoạn thẳng. Phương pháp: + Tìm độ dài mỗi đoạn thẳng: Ta vận dụng kiến thức “Nếu điểm M nằm giữa hai điểm A và B thì AM MB AB”. + Ta so sánh các đoạn thẳng: Hai đoạn thẳng bằng nhau nếu có cùng độ dài. Đoạn thẳng lớn hơn nếu có độ dài lớn hơn. B. BÀI TẬP TRẮC NGHIỆM