Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát THPTQG lần 1 lớp 11 môn Toán năm 2019 2020 trường chuyên Vĩnh Phúc

Nội dung Đề khảo sát THPTQG lần 1 lớp 11 môn Toán năm 2019 2020 trường chuyên Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi Trung học Phổ thông Quốc gia lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát THPTQG lần 1 Toán lớp 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc có mã đề 890, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi gồm có 05 trang, đây là kỳ thi được tổ chức thường xuyên qua các năm lớp 11 – lớp 11 – lớp 12, nhằm có sự chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán, đề thi có đáp án. Trích dẫn đề khảo sát THPTQG lần 1 Toán lớp 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc : + Cho các mệnh đề: “Phép biến hình là phép dời hình” (I). “Phép dời hình là phép biến hình” (II). “Phép dời hình là phép đồng dạng” (III). “Phép đồng dạng là phép biến hình” (IV). Các mệnh đề đúng là? + Đồ thị của hàm số y = x^2 + 4x + 2 có được từ đồ thị hàm số y = x^2 – 4x + 4 như thế nào? A. Sang phải bốn đơn vị và lên trên hai đơn vị. B. Sang trái bốn đơn vị và xuống dưới hai đơn vị. C. Sang trái bốn đơn vị và lên trên hai đơn vị. D. Sang phải bốn đơn vị và xuống dưới hai đơn vị. [ads] + Cho tam giác ABC, D(1;-1) là chân đường phân giác của góc A, AB có phương trình 3x + 2y – 9 = 0, tiếp tuyến tại A của đường tròn ngoại tiếp tam giác có phương trình ∆: x + 2y – 7 = 0. Phương trình BC là ax + by + c = 0 với a, b, c là các số nguyên không có ước chung khác ±1. Tính a – b + c. + Thực hiện liên tiếp hai phép đối xứng tâm sẽ cho kết quả là: A. Một phép vị tự. B. Một phép tịnh tiến. C. Một phép đối xứng trục. D. Một phép đối xứng tâm. + Cho một tam giác vuông. Nếu tăng mỗi cạnh lên 2cm thì diện tích tăng 19cm2. Nếu giảm các cạnh góc vuông đi 3cm và 1cm thì diện tích giảm đi 12cm2. Tính chu vi tam giác ban đầu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm định chất lượng lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Yên Phong 2 Bắc Ninh
Nội dung Đề kiểm định chất lượng lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Yên Phong 2 Bắc Ninh Bản PDF Ngày … tháng 06 năm 2020, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 11 năm 2019 – 2020 lần thứ hai. Đề kiểm định chất lượng Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh gồm 02 trang với 12 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm định chất lượng Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh : + Cho hình lăng trụ tam giác ABC.A0B0C0 có A0ABC là tứ diện đều cạnh a. a) Chứng minh rằng AA0 vuông góc với BC. b) Tính diện tích tứ giác BCC0B0. c) Tính khoảng cách giữa hai mặt phẳng song song (ABC), (A0B0C0). [ads] + Trong không gian, khẳng định nào sau đây đúng? A. Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì song song với nhau. B. Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau. C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau. D. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song với nhau. + Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi ϕ là góc giữa hai mặt phẳng (SAB), (ABCD). Tính cos ϕ.
Đề khảo sát lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thường Kiệt Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thường Kiệt Bắc Ninh Bản PDF Ngày … tháng 05 năm 2020, trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 11 lần thứ hai năm học 2019 – 2020. Đề khảo sát Toán lớp 11 lần 2 năm học 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh mã đề 110 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Ma trận đề khảo sát Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh:Nội dungNhận biếtThông hiểuVận dụng thấpVận dụng caoTổngHàm số lượng giác2 câu0 câu1 câu0 câu0,6 điểmPhương trình lượng giác3 câu2 câu0 câu1 câu1,2 điểmĐại số tổ hợp – Xác suất1 câu2 câu2 câu1 câu1,2 điểmDãy số – Cấp số cộng – Cấp số nhân2 câu1 câu2 câu1 câu1,2 điểmGiới hạn – Hàm số liên tục5 câu3 câu0 câu1 câu1,8 điểmĐạo hàm3 câu2 câu1 câu0 câu1,2 điểmPhép biến hình3 câu2 câu0 câu0 câu0,8 điểmHình học không gian1 câu3 câu4 câu1 câu1,4 điểmTổng20 câu15 câu10 câu5 câu10 điểm
Đề khảo sát lần 3 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề khảo sát lần 3 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Ngày … tháng 05 năm 2020, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 năm học 2019 – 2020 lần thi thứ ba. Đề khảo sát lần 3 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Đăng Đạo – Bắc Ninh mã đề 178, đề được biên soạn theo dạng trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Trích dẫn đề khảo sát lần 3 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Một người bắt đầu đi làm được nhận được số tiền lương là 7 000000 đồng/tháng. Hằng tháng người đó tiết kiệm 20% lương để gửi vào ngân hàng với lãi suất 0,3% / tháng theo hình thức lãi kép (nghĩa là lãi của tháng này  được nhập vào vốn của tháng kế tiếp). Biết rằng người đó nhận lương vào đầu tháng và số tiền tiết kiệm được chuyển ngay vào ngân hàng. Hỏi sau 36 tháng tổng số tiền người đó tiết kiệm được (cả vốn lẫn lãi) là bao nhiêu? (làm tròn đến hàng nghìn) A. 53298000 (đồng). B. 53296000 (đồng). C. 53290000 (đồng). D. 53297 000 (đồng). [ads] + Gọi A và B là hai biến cố của cùng một phép thử. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng? i) Nếu A và B xung khắc thì P(A) + P(B) = 1. ii) Nếu A và B độc lập thì P(A).P(B) = P(A.B). iii) Nếu A và B đối nhau thì P(A ∪ B) = P(A) + P(B). + Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng? i) Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau. ii) Hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau. iii) Nếu đường thẳng a vuông góc với mặt phẳng (P) thì nó vuông góc với mọi đường thẳng trong mặt phẳng (P). iv) Nếu đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì a vuông góc với (P). File WORD (dành cho quý thầy, cô):
Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam
Nội dung Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Bản PDF Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán lớp 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán lớp 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.