Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải Toán 7 - Ngô Văn Thọ

Tài liệu gồm 166 trang phân dạng và hướng dẫn phương pháp giải Toán 7 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : A. PHẦN ĐẠI SỐ CHUYÊN ĐỀ I . SỐ HỮU TỈ + Dạng 1. Thực hiện phép tính + Dạng 2. Biểu diễn số hữu tỉ trên trục số + Dạng 3. So sánh số hữu tỉ + Dạng 4. Tìm điều kiện để một số là số hữu tỉ dương, âm, là số 0 (không dương không âm) + Dạng 5. Tìm các số hữu tỉ nằm trong một khoảng + Dạng 6. Tìm x để biểu thức nguyên + Dạng 7. Các bài toán tìm x + Dạng 8. Các bài toán tìm x trong bất phương trình + Dạng 9. các bài toán tính tổng theo quy luật CHUYÊN ĐỀ II . GIÁ TRỊ TUYỆT ĐỐI + Dạng 1. Tính giá trị biểu thức và rút gọn biểu thức + Dạng 2. |A(x)| = k (Trong đó A(x) là biểu thức chứa x, k là một số cho trước) + Dạng 3. |A(x)| = |B(x)| (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 4. |A(x)| = B(x) (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 5. Đẳng thức chứa nhiều dấu giá trị tuyệt đối + Dạng 6. Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt + Dạng 7. Dạng hỗn hợp + Dạng 8. |A| + |B| = 0 + Dạng 9. |A| + |B| = |A + B| + Dạng 10. |f(x)| > a + Dạng 11. Tìm x sao cho |f(x)| < a + Dạng 12. Tìm cặp giá trị (x; y) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối + Dạng 13. |A| + |B| < m với m > 0 + Dạng 14. Sử dụng bất đẳng thức. |a| + |b| ≥ |a + b| xét khoảng giá trị của ẩn số + Dạng 15. Sử dụng phương pháp đối lập hai vế của đẳng thức + Dạng 16. Tìm GTLN – GTNN của biểu thức CHUYÊN ĐỀ III . LŨY THỪA + Dạng 1. Tính giá trị biểu thức + Dạng 2. Các bài toán tìm x + Dạng 3. Các bài toán so sánh + Dạng 4. Các bài toán chứng minh chia hết CHUYÊN ĐỀ IV . TỈ LỆ THỨC + Dạng 1. Lập tỉ lệ thức từ các số đã cho + Dạng 2. Tìm x từ tỉ lệ thức + Dạng 3. Chứng minh tỉ lệ thức + Dạng 4. Cho dãy tỉ số bằng nhau và một tổng, tìm x, y + Dạng 5. Cho dãy tỉ số, tính giá trị một biểu thức + Dạng 6. Cho dãy tỉ số bằng nhau và một tích, tìm x, y + Dạng 7. Ứng dụng tỉ lệ thức chứng minh bất đẳng thức CHUYÊN ĐỀ V . TỈ LỆ THUẬN – TỈ LỆ NGHỊCH + Dạng 1. Tính hệ số tỉ lệ, biểu diễn x theo y, tính x (hoặc y) khi biết y (hoặc x) + Dạng 2. Cho x và y tỉ lệ thuận hoặc tỉ lệ nghịch, hoàn thành bảng số liệu + Dạng 3. Nhận biết hai đại lượng có tỉ lệ thuận hay tỉ lệ nghịch + Dạng 4.Cho x tỉ lệ thuận (tỉ lệ nghịch) với y, y tỉ lệ thuận (tỉ lệ nghịch) với z. Hỏi mối quan hệ của x và z và tính hệ số tỉ lệ + Dạng 5. Các bài toán đố [ads] CHUYÊN ĐỀ VI . CĂN BẬC 2 + Dạng 1. Tính giá trị biểu thức và viết căn bậc hai của một số + Dạng 2. So sánh hai căn bậc hai + Dạng 3. Tìm x biết √f(x) = a + Dạng 4. Tìm điều kiện xác định của các biểu thức chứa căn + Dạng 5. Chứng minh một số là số vô tỉ ĐỔI SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN RA PHÂN SỐ TỐI GIẢN SỐ THẬP PHÂN HỮU HẠN – SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN + Dạng 1. Nhận biết một phân số là số thập phân hữu hạn hay vô hạn tuần hoàn + Dạng 2. Viết một phân số hoặc một tỉ số dưới dạng số thập phân + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản CHUYÊN ĐỀ VII . HÀM SỐ VÀ ĐỒ THỊ + Dạng 1. Xác định xem đại lượng y có phải là hàm số của đại lượng x không + Dạng 2.Tính giá trị của hàm số tại giá trị của một biến cho trước + Dạng 3. Tìm tọa độ một điểm và vẽ một điểm đã biết tọa độ, tìm các điểm trên một đồ thị hàm số, biểu diễn các điểm lên hình và tính diện tích + Dạng 4. Tìm hệ số a của đồ thị hàm số y = ax + b khi biết một điểm đi qua + Dạng 5. Kiểm tra một điểm có thuộc đồ thị hàm số hay không + Dạng 6. Cách lấy 1 điểm thuộc đồ thị và vẽ đồ thị hàm số y = ax, y = ax + b, đồ thị hàm trị tuyệt đối + Dạng 7. Tìm giao điểm của 2 đồ thị y = f(x) và y = g(x). Chứng minh và tìm điều kiện để 3 đường thẳng đồng quy + Dạng 8. Chứng minh 3 điểm thẳng hàng + Dạng 9. Cho bảng số liệu, hỏi hàm số xác định bởi công thức nào, hàm số là đồng biến hay nghịch biến + Dạng 10. Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc CHUYÊN ĐỀ VIII . THỐNG KÊ + Dạng 1. Khai thác thông tin từ bảng thống kê + Dạng 2. Lập bảng tần số và rút ra nhận xét + Dạng 3. Dựng biểu đồ đoạn thẳng hoặc biểu đồ hình chữ nhật + Dạng 4. Vẽ biểu đồ hình quạt + Dạng 5. Tính số trung bình cộng, tìm Mốt của dấu hiệu CHUYÊN ĐỀ IX . BIỂU THỨC ĐẠI SỐ + Dạng 1. Đọc và viết biểu thức đại số theo yêu cầu bài toán + Dạng 2. Tính giá trị biểu thức đại số + Dạng 3. Tìm GTLN, GTNN + Dạng 4. Bài tập đơn thức + Dạng 5. Bài tập đa thức + Dạng 6. Đa thức một biến + Dạng 7. Tìm nghiệm của đa thức 1 biến + Dạng 8. Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a B. PHẦN HÌNH HỌC CHUYÊN ĐỀ I . ĐƯỜNG THẲNG VUÔNG GÓC VÀ ĐƯỜNG THẲNG SONG SONG. GÓC ĐỐI ĐỈNH CHUYÊN ĐỀ II . TAM GIÁC. TỔNG BA GÓC CỦA MỘT TAM GIÁC CHUYÊN ĐỀ III . QUAN HỆ GIỮA CÁC YẾU TỐ CỦA TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC

Nguồn: toanmath.com

Đọc Sách

Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán Bộ tài liệu này bao gồm 56 trang, cung cấp tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong môn Toán lớp 7. CHUYÊN ĐỀ 1. SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TUYẾN TRONG MỘT TAM GIÁC: PHẦN I. TÓM TẮT LÍ THUYẾT: Bao gồm các thông tin cần biết về tính chất của ba đường trung tuyến trong tam giác. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Sử dụng tính chất trọng tâm của tam giác để giải bài tập. Dạng 2: Chứng minh một điểm là trọng tâm của tam giác theo các phương pháp cụ thể. Dạng 3: Xử lý vấn đề về đường trung tuyến trong tam giác vuông, tam giác cân, tam giác đều. PHẦN III. BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2. SỰ ĐỒNG QUY CỦA BA ĐƯỜNG PHÂN GIÁC TRONG MỘT TAM GIÁC: PHẦN I. TÓM TẮT LÍ THUYẾT: Giải thích các tính chất của ba đường phân giác trong tam giác và cách áp dụng chúng. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Chứng minh các đoạn thẳng bằng nhau, góc bằng nhau trong tam giác. Dạng 2: Chứng minh ba đường đồng quy, ba điểm thẳng hàng trong tam giác. Dạng 3: Xử lý đường phân giác đối với tam giác đặc biệt như tam giác cân, tam giác đều. Dạng 4: Chứng minh mối quan hệ giữa các góc trong tam giác bằng cách sử dụng tia phân giác và định lí tổng ba góc trong tam giác bằng 180 độ. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh.Dạng 2: Chứng minh các bất đẳng thức về độ dài.PHẦN III: BÀI TẬP TỰ LUYỆN Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán Để giúp học sinh lớp 7 nắm vững kiến thức về quan hệ giữa ba cạnh của một tam giác, tài liệu này bao gồm 18 trang với nội dung chính được chia thành ba phần chính. PHẦN I: TÓM TẮT LÍ THUYẾT Phần này tóm tắt những điều cơ bản về quan hệ giữa độ dài ba cạnh của một tam giác. Học sinh sẽ biết được điều kiện cần và đủ để tồn tại một tam giác dựa trên độ dài ba cạnh. PHẦN II: CÁC DẠNG BÀI Phần này là nơi học sinh sẽ học cách giải các dạng bài tập liên quan đến quan hệ giữa ba cạnh của tam giác. Điều này bao gồm chứng minh các bất đẳng thức về độ dài các cạnh và cách áp dụng bất đẳng thức tam giác. Dạng 1: Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. Trong dạng bài này, học sinh sẽ học được cách xác định xem có thể tạo thành một tam giác từ ba độ dài cạnh đã cho. Điều kiện cần và đủ để tồn tại một tam giác sẽ được giải thích rõ ràng. Dạng 2: Chứng minh các bất đẳng thức về độ dài. Đây là phần mở rộng kiến thức về bất đẳng thức tam giác. Học sinh sẽ được hướng dẫn cách chứng minh các bất đẳng thức và biến đổi chúng để giải quyết các bài tập. PHẦN III: BÀI TẬP TỰ LUYỆN Để giúp học sinh nắm chắc kiến thức, phần này chứa các bài tập tự luyện mà học sinh có thể làm để ôn tập và củng cố kiến thức về quan hệ giữa ba cạnh của tam giác. Qua tài liệu này, hy vọng học sinh sẽ hiểu rõ hơn về quan hệ giữa ba cạnh của tam giác và tự tin trong việc giải các bài tập liên quan trong chương trình Toán lớp 7.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Tài liệu này bao gồm 20 trang, tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Trình bày về khái niệm đường vuông góc và đường xiên, cách nhận biết chúng và tính khoảng cách từ một điểm đến một đường thẳng. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Nhận biết đường vuông góc, đường xiên và tính khoảng cách từ một điểm đến một đường thẳng. Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. Tính khoảng cách từ một điểm đến đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2: Đưa ra quan hệ giữa đường vuông góc và đường xiên, sử dụng định lý đường vuông góc ngắn hơn đường xiên. PHẦN III. BÀI TẬP TỰ LUYỆN: Bao gồm các bài tập để học sinh tự luyện tập và củng cố kiến thức về quan hệ giữa đường vuông góc và đường xiên. Tài liệu này sẽ giúp học sinh dễ dàng hiểu và áp dụng các kiến thức về đường vuông góc và đường xiên trong môn Toán lớp 7.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7Tóm tắt lí thuyết:Các dạng bài tập:Dạng 1: So sánh góc trong tam giácDạng 2: So sánh cạnh trong tam giácBài tập tự luyện: Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7 Để hiểu rõ hơn về mối quan hệ giữa góc và cạnh đối diện trong một tam giác, chúng ta cần nắm vững các điều cơ bản sau đây: Tóm tắt lí thuyết: - Định lí 1: So sánh các cạnh đối diện với các góc trong một tam giác. - Định lí 2: So sánh các góc đối diện với các cạnh trong tam giác. Các dạng bài tập: Dạng 1: So sánh góc trong tam giác - TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác, ta áp dụng định lí 1. - TH2: Nếu các góc cần so sánh khác tam giác, dùng góc trung gian để so sánh. Dạng 2: So sánh cạnh trong tam giác - TH1: Nếu cạnh cần so sánh nằm trong tam giác, ta áp dụng định lí 2. - TH2: Nếu cạnh cần so sánh khác tam giác, dùng góc trung gian để so sánh. Bài tập tự luyện: Để nắm vững kiến thức, hãy tự luyện tập các bài toán liên quan đến quan hệ giữa góc và cạnh đối diện trong tam giác. Hãy áp dụng các định lí và phương pháp đã học để giải quyết các bài tập một cách thành thạo.