Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 3 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 3 năm học 2022 – 2023 trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 07 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 lần 3 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Trên một khúc sông, một canô đi xuôi dòng 60 km, sau đó lại chạy ngược dòng 64 km, biết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng 30 phút. Tính vận tốc riêng của canô, biết vận tốc của dòng nước là 4 km/h. + Một bồn chứa xăng trên xe có cấu tạo: hai đầu là hai nửa hình cầu có đường kính là 2,4m , phần thân là một hình trụ có chiều dài 3,4m . Tính thể tích của bồn chứa xăng. (Lấy π ≈ 3,14). + Cho tam giác 𝐴𝐴𝐴𝐴𝐴𝐴 nhọn nội tiếp (O) ( AB AC). Các đường cao AD; BE; CF cắt nhau tại 𝐻𝐻. Đường thẳng 𝐴𝐴𝐴𝐴 cắt (𝑂𝑂) tại 𝐾𝐾 (𝐾𝐾 khác 𝐴𝐴). a) Chứng minh tứ giác 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 là tứ giác nội tiếp. b) Kẻ đường kính 𝐴𝐴𝐴𝐴. Chứng minh 𝐴𝐴𝐴𝐴. 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴. 𝐴𝐴𝐴𝐴 và tứ giác 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 là hình thang cân. c) Đường tròn đường kính 𝐴𝐴𝐴𝐴 cắt (𝑂𝑂) tại 𝑀𝑀 (𝑀𝑀 khác 𝐴𝐴). Gọi 𝑃𝑃 là điểm chính giữa cung nhỏ BC ; MP cắt BC tại 𝐺𝐺. Chứng minh 𝐻𝐻𝐻𝐻 là phân giác của góc 𝐵𝐵𝐵𝐵𝐵𝐵.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 15 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Giang : + Tìm m để phương trình x2 + 2mx – 2m – 6 = 0 (m là tham số) có hai nghiệm x1, x2 sao cho x12 + x22 đạt giá trị nhỏ nhất. + Tìm nghiệm nguyên của phương trình (2x + y)(x – y) + x + 8y = 22. + Cho đường tròn (O) đường kính BC và H là một điểm nằm trên đoạn thẳng BO (điểm H không trùng với hai điểm B và O). Qua H vẽ đường thẳng vuông góc với BC, cắt đường tròn (O) tại A và D. Gọi M là giao điểm của AC và BD, qua M vẽ đường thẳng vuông góc với BC tại N. a) Chứng minh rằng MNBA là tứ giác nội tiếp. b) Chứng minh rằng 2BH.BO = AB2, từ đó tính giá trị của P. c) Từ B vẽ tiếp tuyến với đường tròn (O), cắt hai đường thẳng AC và AN lần lượt tại K và E. Chứng minh rằng đường thẳng EC luôn đi qua trung điểm I của đoạn thẳng AH khi điểm H di động trên đoạn thẳng BO.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Cao Bằng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cao Bằng; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Cao Bằng : + Cho Parabol (P): y = mx2 và đường thẳng (d): y = 2x – m2 (m là tham số m > 0). Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A và B. Chứng minh rằng khi đó hai điểm A, B nằm bên phải trục tung. + Cho nửa đường tròn (O;R) đường kính AB. Đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M (M khác A và B). Tia AM cắt đường thẳng d tại C. Gọi I là trung điểm của AM, tia IO cắt đường thẳng d tại N. a) Chứng minh rằng tứ giác OBCI nội tiếp. b) Chứng minh AI.IC = IO.IN. c) Gọi E là hình chiếu của O trên AN. Chứng minh rằng? d) Xác định vị trí của điểm M để 2AM + AC đạt giá trị nhỏ nhất. + Cho hệ phương trình (m là tham số). Tìm các giá trị nguyên của m để hệ phương trình đã cho có nghiệm duy nhất (x;y) sao cho biểu thức A = 3x – y nhận giá trị nguyên.
Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 - 2023 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 – 2023 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = ax2 qua M(3;3) và đường thẳng (d): y = -1/2.x + m (với m là tham số). Xác định phương trình của parabol (P), từ đó tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(xA;yA), B(xB;yB) khác gốc tọa độ sao cho? + Gọi x1, x2 là hai nghiệm của phương trình x2 + mx + 1 = 0 và x3, x4 là hai nghiệm của phương trình x2 + nx + 1 = 0 với m và n là các tham số thỏa mãn. Chứng minh rằng. 3) Cho hai số x và y liên hệ với nhau bởi đẳng thức. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x – y + 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm O, có ba đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N; gọi P, Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh: 1) DH là tia phân giác của EDF. 2) HE/HF = NB/NC. 3) HE.MQ.HB = HF.MP.NC.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau : + Cho Parabol (P): y = 3/2.x2 và đường thẳng (d): y = 2mx + 1. a) Chứng tỏ đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên cùng mặt phẳng tọa độ Oxy và tìm tọa độ giao điểm của chúng. + Một xí nghiệp chế biến thủy sản dự kiến đóng 3 000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu họ thực hiện đúng tiến độ, những ngày sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu nên chẳng những hoàn thành sớm được 1 ngày mà còn vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đó đóng bao nhiêu hộp tôm xuất khẩu? + Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.