Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát năng lực Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát năng lực môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề khảo sát năng lực Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Giá bán ban đầu của một bó hoa hướng dương là 60000 đồng. Vào dịp khuyến mãi, giá mỗi bó hoa hướng dương được giảm 20% và nếu khách hàng mua 10 bó trở lên thì từ bó thứ 10 trở đi khách hàng sẽ chỉ phải trả một nửa giá đang bán (giá đã giảm 20%). Một khách hàng mua hoa hướng dương vào dịp khuyến mãi đã trả 648000 đồng. Hỏi khách hàng này đã mua bao nhiêu bó hoa hướng dương? + Bố bạn Bình cần sơn phủ tường và trần mặt trong căn phòng có dạng hình hộp chữ nhật dài 17m; rộng 4m và cao 3m (không sơn cửa, tổng diện tích cửa là 6,4m2). Bạn Bình đi mua giúp bố cây lăn sơn tường. Một cây lăn sơn tường có dạng hình trụ với đường kính đáy là 5cm và chiều cao là 23cm (hình vẽ bên). Nhà sản xuất cho biết sau khi lăn 1000 vòng thì cây sơn tường phải được thay cây mới. Hỏi bạn Bình cần mua ít nhất mấy cây lăn sơn tường như thế? Biết diện tích xung quanh hình trụ được cho bởi công thức: Sxq = 2piRh, trong đó pi = 3,14; R và h lần lượt là bán kính đáy và chiều cao hình trụ. + Một bài kiểm tra trắc nghiệm khách quan gồm 20 câu hỏi với cách thức tính điểm như sau: Mỗi câu trả lời đúng được cộng 5 điểm, mỗi câu trả lời sai bị trừ 2 điểm và mỗi câu không trả lời được 0 điểm. Có 3 bạn Bình, An và Tùng đã tham gia làm bài kiểm tra này. a) Bình trả lời toàn bộ các câu hỏi trong bài kiểm tra và đúng 13 câu. An không trả lời 4 câu và chỉ đúng 12 câu. Hỏi trong hai bạn này, ai đạt điểm cao hơn? Vì sao? b) Kết thúc bài kiểm tra, Tùng đạt được 69 điểm. Hỏi Tùng đã trả lời đúng bao nhiêu câu?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Nam Trung Yên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Nam Trung Yên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề khảo sát Toán 9 năm 2021 – 2022 trường THCS Nam Trung Yên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Bác An đến siêu thị mua một cái quạt hơi nước và một bộ nồi với tổng số tiền theo niêm yết là 8 500 000 đồng. Tuy nhiên, nhờ siêu thị khuyến mãi để tri ân khách hàng nên giá bán của quạt hơi nước và bộ nồi đã lần lượt giảm bớt 10% và 20% so với giá niêm yết. Do đó, bác An đã trả ít hơn 1 250 000 đồng khi mua hai sản phẩm trên. Hỏi giá niêm yết của cái quạt hơi nước và bộ nồi là bao nhiêu? + Trong mặt phẳng tọa độ Oxy, cho parabol (P):y = -x2 và đường thẳng (d): y = -3mx + 3m – 1 (với m là tham số) a) Chứng minh rằng (P) và (d) luôn có điểm chung với mọi giá trị của tham số m. b) Tìm các giá trị nguyên của m để d cắt (P) tại hai điểm phân biệt nằm khác phía đối với trục tung, có hoành độ x1 và x2 thỏa mãn điều kiện 2|x1| + 1 = 5×2. + Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Đường cao AD; BE cắt nhau tại H. Kéo dài BE cắt đường tròn (O;R) tại F. a) Chứng minh tứ giác BDEA là tứ giác nội tiếp. b) Chứng minh AC là phân giác HAF, từ đó chứng minh tam giác AHF cân. c) Kẻ tia Et là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE tại điểm E, M là giao điểm của Et và AB. Chứng minh M là trung điểm của AB.
Đề khảo sát Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Xuân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát học sinh lớp 9 môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND quận Thanh Xuân, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 06 tháng 04 năm 2022. Trích dẫn đề khảo sát Toán 9 năm 2021 – 2022 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể thì sau 6 giờ đầy bể. Nếu mở vòi 1 chảy một mình trong 3 giờ rồi khóa lại, mở vòi 2 chảy tiếp trong 4 giờ thì lượng nước trong bể chiếm 60% bể. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu sẽ đây bể? + Một người thợ cần cắt một tấm kính để đặt khít lên mặt bàn gỗ hình tròn có đường kính 80cm. Tính diện tích bề mặt kính mà người đó cần cắt (lấy pi = 3,14). + Cho phương trình x2 + mx – m – 1 = 0 với m là tham số. a) Giải phương trình khi m = 2. b) Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 sao cho tổng bình phương hai nghiệm không vượt quá 2.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THPT chuyên Hà Nội – Amsterdam. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe dự định dùng một số xe cùng loại để chở 180 tấn hàng để ủng hộ đồng bào các tỉnh khó khăn để chống dịch Covid. Lúc sắp khởi hành đội được bổ sung thêm 3 xe nữa cùng loại. Nhờ vậy, so với ban đầu, mỗi xe chở ít hơn 2 tấn. Hỏi lúc đầu đội có bao nhiêu xe? Biết khối lượng hàng mỗi xe chở như nhau. + Một bồn nước inox có dạng một hình trụ với đường kính đáy 60cm, chiều cao là 1m. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (bỏ qua chiều dày của vỏ thùng và lấy pi = 3,14). + Với các số thực không âm a, b, c thỏa mãn ab + bc + ca + abc = 4, tìm giá trị nhỏ nhất của biểu thức P.
Đề kiểm tra Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 đợt 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình. Trích dẫn đề kiểm tra Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho phương trình: x2 + mx + m – 1 = 0 (1) (m là tham số). a) Giải phương trình (1) tại m = 7. b) Chứng tỏ rằng phương trình (1) luôn có nghiệm với mọi giá trị của m. c) Tìm m sao cho phương trình (1) có hai nghiệm x1, x2 là hai số đối nhau. + Cho các số thực dương a, b, c thỏa mãn: (a + 2)(b + 2) + (b + 2)(c + 2) + (c + 2)(a + 2) > (a + 2)(b + 2)(c + 2). Chứng minh rằng: abc < 1. + Cho đường tròn (O) đường kính MN, dây CD vuông góc với MN tại H. Trên đoạn CH lấy điểm I (không trùng với C và H), MI cắt đường tròn (O) tại điểm thứ hai là A. a) Chứng minh tứ giác AIHN nội tiếp trong một đường tròn b) Chứng minh ZMCD = ZMAC c) Chứng minh MC2 = MI.MA d) Gọi P là giao điểm của MA và CN, Q là giao điểm của AD và MN. Chứng minh P là tâm của đường tròn nội tiếp tam giác ACQ.