Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 202 trang, tuyển tập 8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh lớp 9 tham khảo để ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 sắp tới. CHỦ ĐỀ 1 – RÚT GỌN BIỂU THỨC. Dạng 1. Rút gọn biểu thức 1. Dạng 2. Cho giá trị của x tính giá trị của biểu thức 3. Dạng 3. Đưa về giải phương trình 4. Dạng 4. Đưa về giải bất phương trình 10. Dạng 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 16. Dạng 7. Tìm x để P nhận giá trị là số nguyên 24. Dạng 8. Tìm tham số để phương trình P = m có nghiệm 28. CHỦ ĐỀ 2 – HỆ PHƯƠNG TRÌNH. I. HỆ KHÔNG CHỨA THAM SỐ 33. Dạng 1. Hệ đa thức bậc nhất đối với x và y 33. Dạng 2. Hệ chứa phân thức 34. Dạng 3. Hệ chứa căn 36. Dạng 4. Hệ thức chứa trị tuyệt đối 38. II. HỆ CHỨA THAM SỐ 40. CHỦ ĐỀ 3 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH. I. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH 45. Dạng 1. Toán chuyển động 45. Dạng 2. Toán năng suất 47. Dạng 3. Toán làm chung công việc 48. Dạng 4. Toán về cấu tạo số 51. Dạng 5. Toán phần trăm 52. Dạng 6. Toán có nội dung hình học 53. II. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI 55. Dạng 1. Toán chuyển động 55. Dạng 2. Toán năng suất 59. Dạng 3. Toán làm chung công việc 62. Dạng 4. Toán có nội dung hình học 63. CHỦ ĐỀ 4 – PHƯƠNG TRÌNH BẬC HAI VÀ ĐỊNH LÝ VI-ÉT. I. ĐỊNH LÍ VI-ÉT 68. Dạng 1 các nghiệm thỏa mãn một biểu thức đối xứng 68. Dạng 2. Kết hợp định lý Vi-ét để giải các nghiệm 70. Dạng 3. Giải các nghiệm dựa vào ∆ là bình phương 72. Dạng 4. Tính x1^2 theo x1 và x2^2 theo x2 dựa vào phương trình ax2 + bx + c = 0. II. HỆ QUẢ CỦA ĐỊNH LÝ VI-ÉT 77. Dạng 1. Dạng toán có thêm điều kiện phụ 77. Dạng 2. So sánh nghiệm với số 0 và số a 80. Dạng 3. Đặt ẩn phụ 81. III. SỰ TƯƠNG GIAO CỦA ĐƯỜNG THẲNG VÀ PARABOL 83. Dạng 1. Tìm tham số để đường thẳng tiếp xúc parabol, tìm tọa độ tiếp điểm 83. Dạng 2. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức đối xứng đối với xA và xB 84. Dạng 3. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức không đối xứng đối với xA và xB 87. Dạng 4. Tìm tham số để đường thẳng cắt parapol tại hai điểm phân biệt A, B liên quan đến tung độ A, B 92. Dạng 5. Bài toán liên quan đến độ dài, diện tích 94. CHỦ ĐỀ 5 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. I. PHƯƠNG TRÌNH KHÔNG CHỨA THAM SỐ 102. Dạng 1. Phương trình bậc ba nhẩm được một nghiệm 102. Dạng 2. Phương trình trùng phương 102. Dạng 3. Phương trình dạng 103. Dạng 4. Phương trình dạng 432 ax bx cx bx a 0 103. Dạng 5. Phương trình giải bằng phương pháp đặt ẩn phụ 104. Dạng 6. Phương trình chứa ẩn ở mẫu 104. II. PHƯƠNG TRÌNH CHỨA THAM SỐ 105. Dạng 1. Phương trình bậc ba đua được về dạng tích (x – α)(ax2 + bx + c) = 0 105. Dạng 2. Phương trình trùng phương 106. CHỦ ĐỀ 6 – ĐƯỜNG TRÒN. Dạng 1. Kết nối các góc bằng nhau thông qua tứ giác nội tiếp 110. Dạng 2. Chứng minh ba điểm thẳng hàng 119. Dạng 3. Tiếp tuyến 121. Dạng 4. Chứng minh điểm thuộc đường tròn, chứng minh đường kính 124. Dạng 5. Sử dụng định lý Ta-lét và định lý Ta-lét đảo 128. Dạng 6. Sử dụng tính chất phân giác 135. CHỦ ĐỀ 7 – BẤT ĐẲNG THỨC. I. BẤT ĐẲNG THỨC CÔSI 149. Dạng 1. Dạng tổng sang tích 149. Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp 150. Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Cô-si 151. Dạng 4. Ghép cặp đôi 154. Dạng 5. Dự đoán kết quả rồi tách thích hợp 154. Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kêt quả 156. Dạng 7. Tìm lại điều kiện của ẩn 160. II. BẤT ĐẲNG THỨC BUNHIA 162. III. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 166. Dạng 1. Đưa về bình phương 166. Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một 167. Dạng 3. Tạo ra ab + bc + ca 169. Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tòn tại hai số có tích không âm 170. Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1 172. Dạng 6. Dự đoán kết quả rồi xét hiệu 174. CHỦ ĐỀ 8 – PHƯƠNG TRÌNH VÔ TỶ. I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 181. Dạng 1. Ghép thích hợp đưa về tích 181. Dạng 2. Nhân liên hợp đưa về tích 182. Dạng 3. Dự đoán nghiệm để từ đó tách thích hợp đưa về tích 185. II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 191. Dạng 1. Biến đổi về một biểu thức và đặt một ẩn phụ 191. Dạng 2. Biến đổi về hai biểu thức và đặt hai ẩn phụ rồi đưa về tích 193. Dạng 3. Đặt ẩn phụ kết hợp với ẩn ban đầu đưa về tích 195. Dạng 2. Đánh giá vế này ≥ một số, vế kia ≤ số đó bằng BĐT Cô-si, Bunhia 197. III. PHƯƠNG PHÁP ĐÁNH GIÁ 202.

Nguồn: toanmath.com

Đọc Sách

Các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 62 trang, được biên soạn bởi nhóm tác giả Mathpiad − Tạp chí và tư liệu toán học: Phan Quang Đạt − Nguyễn Nhất Huy − Dương Quỳnh Châu, tổng hợp các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 chuyên Toán. Chương I : Một số kiến thức sử dụng trong tài liệu. 1 Các định nghĩa ngoài sách giáo khoa. + Số chính phương là số có thể biểu diễn dưới dạng bình phương của một số tự nhiên. + Số lập phương là số có thể biểu diễn dưới dạng lập phương của một số nguyên. 2 Các kí hiệu, quy ước ngoài sách giáo khoa. + Kí hiệu a | b dùng thay cho mệnh đề “a là ước của b”, và đọc là “a chia hết b”. + Kí hiệu (a,b) dùng để chỉ ước chung lớn nhất của a và b. Đôi lúc, nó còn dùng để chỉ cặp số (a,b), vì thế cần phân biệt rõ. + Kí hiệu a ≡ b (mod m) dùng thay cho mệnh đề “a và b có cùng số dư khi chia cho m” và đọc là “a đồng dư với b theo modulo m”. 3 Các hằng đẳng thức mở rộng. 4 Các tính chất về ước chung lớn nhất. + Với các số nguyên a, b, c khác 0 thỏa mãn c | ab và (a,c) = 1, ta có thể suy ra c | b. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c2 và (a,c) = 1, ta có |a| và |b| là hai số chính phương. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c3 và (a,c) = 1, ta có a và b là hai số lập phương. 5 Các tính chất về đồng dư thức và chia hết. (a) Tính chia hết của tổng, tích các số nguyên liên tiếp. + Tổng của n số nguyên liên tiếp luôn chia hết cho n. + Tích của n số nguyên liên tiếp luôn chia hết cho n!, ở đây n! là tích của tất cả các số tự nhiên từ 1 đến n. (b) Nếu a ≡ b (mod m). (c) Một số chính phương bất kì chỉ có thể: + Đồng dư với 0 hoặc 1 theo modulo 3. + Đồng dư với 0 hoặc 1 theo modulo 4. + Đồng dư với 0,1 hoặc 4 theo modulo 8. (d) Định lý Fermat nhỏ: Cho p là số nguyên tố và a là số nguyên dương thỏa mãn a không chia hết cho p, khi đó a^ p − 1 ≡ 1 (mod p). 6 Bổ đề kẹp. Giữa hai lũy thừa số mũ n liên tiếp, không tồn tại một lũy thừa cơ số n nào. Hệ quả: với mọi số nguyên a: + Không có số chính phương nào nằm giữa a2 và (a + 1)2. + Số chính phương duy nhất nằm giữa a2 và (a + 2)2 là (a + 1)2. + Có đúng k − 1 số chính phương nằm giữa a2 và (a + k)2. 7 Bổ đề về nghiệm nguyên của phương trình bậc hai. Nếu phương trình bậc hai với hệ số nguyên ax2 + bx + c = 0 có hai nghiệm nguyên (không nhất thiết phân biệt) thì ∆ = b2 −4ac là số chính phương. Chương II : Giới thiệu một số bài toán số học trong đề thi vào lớp 10 chuyên Toán. Chương III : Lời giải tham khảo.
Một số phương pháp chứng minh bất đẳng thức
Tài liệu gồm 78 trang, hướng dẫn một số phương pháp chứng minh bất đẳng thức, đây thường là bài toán khó nhất trong các đề thi tuyển sinh vào lớp 10 môn Toán. I. Bất đẳng thức Côsi. + Dạng 1. Dạng tổng sang tích. + Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp. + Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Côsi. + Dạng 4. Ghép cặp đôi. + Dạng 5. Dự đoán kết quả rồi tách thích hợp. + Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kết quả. + Dạng 7. Tìm lại điều kiện của ẩn. II. Bất đẳng thức Bunhia. III. Phương pháp biến đổi tương đương. + Dạng 1. Đưa về bình phương. + Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một. + Dạng 3. Tạo ra ab + bc + ca. + Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tồn tại hai số có tích không âm. + Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1. + Dạng 6. Dự đoán kết quả rồi xét hiệu. Hệ thống bài tập sử dụng trong chủ đề. 1. Bất đẳng thức Côsi. 2. Bất đẳng thức Bunhia. 3. Phương pháp biến đổi tương đương.
Các bài toán sử dụng nguyên lý bất biến trong giải toán
Tài liệu gồm 16 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán sử dụng nguyên lý bất biến trong giải toán, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Nguyên lý bất biến. Cho a, b, c là những số thực ta xét tổng S = a + b + c. Nếu ta đổi chỗ a cho b, b cho c, c cho a, thì tổng S luôn luôn chỉ là một (không đổi). Tổng này không thay đổi đối với thứ tự phép cộng. Dù a, b, c có thay đổi thứ tự như thế nào chăng nữa S vẫn không thay đổi, nghĩa là S bất biến đối với việc thay đổi các biến khác. Trong thực tế cũng như trong toán học, rất nhiều vấn đề liên quan đến một số đối tượng nghiên cứu lại bất biến đối với sự thay đổi của nhiều đối tượng khác. 2. Các bước áp dụng nguyên lý bất biến khi giải toán. Để giải toán được bằng đại lượng bất biến ta thực hiện theo các bước sau: + Bước 1: Ta phải phát hiện ra những đại lượng bất biến trong bài toán. Bước này tương đối khó nếu ta không luyện tập thường xuyên. + Bước 2: Xử lý tiếp đại lượng bất biến để tìm ra các điểm mâu thuẫn. B. BÀI TẬP VẬN DỤNG C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Các bài toán sử dụng nguyên lý cực hạn
Tài liệu gồm 20 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán sử dụng nguyên lý cực hạn, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Nguyên lý cực hạn. Nguyên lí cực hạn được phát biểu đơn giản như sau: Nguyên lí 1: Trong một tập hữu hạn và khác rỗng các số thực luôn luôn có thể chọn được số bé nhất và số lớn nhất. Nguyên lí 2: Trong một tập khác rỗng các số tự nhiên luôn luôn có thể chọn được số bé nhất. Nhờ nguyên lý này ta có thể xét các phần tử mà một đại lượng nào đó có giá trị lớn nhất hoặc nhỏ nhất, chẳng hạn: + Xét đoạn thẳng lớn nhất (hoặc nhỏ nhất) trong một số hữu hạn đoạn thẳng. + Xét góc lớn nhất (hoặc nhỏ nhất) trong một số hữu hạn góc. + Xét đa giác có diện tích hoặc chu vi nhỏ nhất (hoặc lớn nhất) trong một số hữu hạn đa giác. + Xét khoảng cách lớn nhất (hoặc nhỏ nhất) trong một số hữu hạn khoảng cách giữa hai điểm hoặc khoảng cách từ một điểm đến một đường thẳng. + Xét các điểm là đầu mút của một đoạn thẳng, xét các điểm ở phía trái nhất hoặc phải nhất của một đoạn thẳng (giả thiết là đoạn thẳng nằm ngang). Nguyên lí cực hạn thường được sử dụng kết hợp với các phương pháp khác, đặc biệt là phương pháp phản chứng, được vận dụng trong trong trường hợp tập các giá trị cần khảo sát chỉ tập hợp hữu hạn (nguyên lí 1) hoặc có thể có vô hạn nhưng tồn tại một phần tử lớn nhất hoặc nhỏ nhất (nguyên lí 2). 2. Các bước áp dụng nguyên lý cực hạn khi giải toán. Khi vận dụng nguyên lí này, ta phải tiến hành các bước sau: + Bước 1. Chứng minh rằng trong tất cả các giá trị cần khảo sát luôn tồn tại giá trị lớn nhất hoặc giá trị nhỏ nhất. + Bước 2. Xét bài toán trong trường hợp riêng khi nó nhận giá trị này (nhỏ nhất hoặc lớn nhất). + Bước 3. Chỉ ra một mâu thuẫn, chỉ ra một giá trị còn nhỏ hơn (hay lớn hơn) giá trị ta đang khảo sát. Theo nguyên lí của phương pháp phản chứng, ta sẽ suy ra điều phải chứng minh. B. BÀI TẬP VẬN DỤNG C. HƯỚNG DẪN GIẢI – ĐÁP SỐ