Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Quận 12 TP HCM

Nội dung Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Quận 12 TP HCM Bản PDF - Nội dung bài viết Đề kiểm tra học kỳ 1 Toán lớp 9 năm 2019 - 2020 Đề kiểm tra học kỳ 1 Toán lớp 9 năm 2019 - 2020 Chào các thầy cô giáo và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến bạn đề kiểm tra học kỳ 1 môn Toán năm 2019 - 2020 của phòng GD&ĐT Quận 12, TP HCM. Đề thi gồm có 6 bài toán trên 1 trang, thời gian làm bài 90 phút. Chúng ta cùng điểm qua một số nội dung trong đề thi nhé: 1. Bài 1: Vẽ đồ thị của hai hàm số y = x/2 và y = 2x - 3 trên cùng một hệ trục tọa độ và tìm tọa độ giao điểm của hai đồ thị. 2. Bài 2: Một cái bể đang chứa 12 m3 nước, nước được bơm vào bể với lưu lượng 2 m3/giờ. Hãy viết công thức để tính lượng nước trong bể sau t giờ và tính lượng nước sau 8 giờ. Nếu dung tích bể là 37 m3, sau bao lâu bể sẽ đầy? 3. Bài 3: Hai người bạn góp vốn kinh doanh, người thứ nhất góp 150 triệu đồng và người thứ hai góp 120 triệu đồng. Sau một khoảng thời gian, họ có lãi 72 triệu đồng được chia theo tỉ lệ vốn góp. Hãy tính số tiền lãi mà mỗi người nhận được. Chúc các em học sinh lớp 9 sẽ làm tốt đề kiểm tra này. Hy vọng đây sẽ là cơ hội để thực hành và củng cố kiến thức đã học. Cảm ơn các thầy cô giáo đã dành thời gian chấm bài và hướng dẫn cho học sinh. Chúc mọi người thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Bắc Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng toàn thể các em học sinh lớp 9 đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội, đề thi nhằm đánh giá lại toàn diện năng lực môn Toán của học sinh lớp 9 sau giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực, tuyển chọn học sinh giỏi Toán 9. Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không tính thời gian giáo viên phát đề). [ads] Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội : + Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d). 1) Vẽ đường thẳng (d) khi m = 2. 2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1. 3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1. + Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D. 1) Chứng minh rằng: ∆MEN vuông tại E. Từ đó chứng minh DE.DM = DN2. 2) Từ O kẻ OI vuông góc với ME (I ∈ ME). Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn. 3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O. 4) Chứng minh rằng: góc DEA = góc DAM.
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R
Đề kiểm tra HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề kiểm tra HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 12 tháng 12 năm 2017.