Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Đặng Thai Mai Nghệ An

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Đặng Thai Mai Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An Đề học sinh giỏi Toán lớp 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Đây là bộ đề kiểm tra học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 tại trường THCS Đặng Thai Mai, thành phố Vinh, tỉnh Nghệ An. Bộ đề này bao gồm các câu hỏi đa dạng và phong phú, đồng thời cung cấp đáp án và hướng dẫn chấm điểm chi tiết. Dưới đây là một số câu hỏi trong đề thi: Cho hai số nguyên dương \(a\), \(b\) thỏa mãn \(a > b\) và \(a^2 + b^2 + 1 = 2(ab + a + b)\). Chứng minh \(a\), \(b\) là hai số chính phương liên tiếp. Cho tam giác nhọn \(ABC\) có đường cao \(AH\). Gọi \(E\), \(F\) lần lượt là các điểm thuộc các tia \(HC\), \(HB\) sao cho \(EAB = FAC = 90^\circ\). Hãy chứng minh những điều đề ra trong phần b của câu hỏi này. Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán phức tạp mà còn khuyến khích họ phát huy sự sáng tạo và logic trong việc giải quyết vấn đề. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Tân Kỳ - Nghệ An
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 10 năm 2021. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An : + a) Chứng minh rằng với mọi số tự nhiên n thì n3 + 11n chia hết cho 6. b) Giải phương trình c) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 – y2 = 4x + 3. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường thẳng vuông góc với BC tại B cắt AC tại D. a) Chứng minh rằng: AH2 = HB.HC và BH.BC = AD.AC. b) Chứng minh c) Cho góc nhọn a và sin a = 2/3. Tính P. + Cho 7 điểm phân biệt nằm bên trong hình vuông ABCD có cạnh bằng 10. Chứng minh rằng có ít nhất một điểm trong hình vuông đã cho (có thể nằm trên cạnh của hình vuông) sao cho khoảng cách từ nó đến 7 điểm đã cho đều lớn hơn 2,5.
Đề thi HSG Toán 9 cấp thị xã năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
Đề thi HSG Toán 9 cấp thị xã năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG Toán 9 cấp thành phố năm 2021 - 2022 phòng GDĐT TP Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán 9 cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Thanh Hóa; đề thi được biên soạn theo hình thức 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 09 năm 2021.
Đề thi HSG Toán cấp huyện năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán cấp huyện năm học 2021 – 2022 phòng GD&ĐT huyện Kim Thành, tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 05 tháng 10 năm 2021.