Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 2022 trường chuyên Lam Sơn Thanh Hóa

Nội dung Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 2022 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi vào lớp 10 môn Toán (chuyên Toán) trường chuyên Lam Sơn Thanh Hóa năm 2021 - 2022Câu 1: Đặt quân cờ vào bảng ô vuôngCâu 2: Điểm I và tứ giác ADOICâu 3: Chứng minh số hữu tỉ Đề thi vào lớp 10 môn Toán (chuyên Toán) trường chuyên Lam Sơn Thanh Hóa năm 2021 - 2022 Chào mừng quý thầy cô và các em học sinh! Dưới đây là đề thi vào lớp 10 môn Toán chuyên Toán của trường chuyên Lam Sơn Thanh Hóa năm 2021 - 2022, với đầy đủ đáp án và lời giải chi tiết. Câu 1: Đặt quân cờ vào bảng ô vuông Bài toán yêu cầu đặt 33 quân cờ vào bảng ô vuông 8x8 sao cho không có hai quân cờ nào chiếu nhau. Chứng minh rằng luôn tồn tại ít nhất 5 quân cờ không chiếu nhau trong mọi trường hợp. Câu 2: Điểm I và tứ giác ADOI Cho hai đường tròn cắt nhau tại A và B. Xác định vị trí của điểm I sao cho tứ giác AOIO là hình bình hành và D là điểm đối xứng với A qua B. Sau đó, chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác APQ và tứ giác ADPQ nội tiếp. Câu 3: Chứng minh số hữu tỉ Đặt a, b, c là ba số hữu tỉ khác nhau. Xác định số hữu tỉ B = (a^2b + b^2c + c^2a)/(ab^2 + bc^2 + ca^2) và chứng minh rằng B cũng là số hữu tỉ. Hãy tự tin và thực hiện tốt bài thi của mình! Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nghinh Xuyên - Phú Thọ
Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nghinh Xuyên – Phú Thọ gồm 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nghinh Xuyên – Phú Thọ : + Số tiền phải trả để mua x gói kẹo được cho bởi công thức y x 54000 6000 (đồng). Tính số tiền phải trả để mua 5 gói kẹo. Nếu có 500000 đồng thì có thể mua tối đa bao nhiêu gói kẹo? + Cho hệ phương trình 3 2 9 5 x y m x y có nghiệm (x;y). Tìm m để biểu thức C xy x 1 đạt giá trị lớn nhất. + Cho ABC có ba góc nhọn nội tiếp đường tròn O bán kính R. Kẻ đường cao AH BK của tam giác ABC, các tia AH BK lần lượt cắt O tại các điểm thứ hai là D E. a) Chứng minh tứ giác ABHK nội tiếp đường tròn. Xác định tâm đường tròn đó. b) Chứng minh HK DE. c) Cho O và dây AB cố định, điểm C di chuyển trên O sao cho ABC có ba góc nhọn. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp CHK không đổi.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Lê Quý Đôn - Hà Nội
Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Lê Quý Đôn – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Lê Quý Đôn – Hà Nội : + Một hộp sữa hình trụ có bán kính đáy là 4cm, chiều cao là 10cm. Tính diện tích vật liệu dùng để tạo nên một vỏ hộp hộp sữa đó nếu tỉ lệ hao hụt là 5%? + Giải bài toán bằng cách lập hệ phương trình: Hai đội công nhân cùng làm một công việc trong 24 ngày thì xong. Nếu đội A làm trong 10 ngày và đội B làm trong 12 ngày thì được 7 công việc. Hỏi nếu làm một mình thì mỗi đội làm xong công việc đó trong bao lâu? + Từ một điểm M nằm ngoài đường tròn (O;R), vẽ tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Trên cung nhỏ AB lấy một điểm C bất kì, vẽ CP vuông góc với MA, CQ vuông góc với MB (P thuộc MA, Q thuộc MB). 1) Chứng minh rằng tứ giác MPCQ nội tiếp đường tròn. 2) Vẽ CH vuông góc với AB (H thuộc AB). Chứng minh: CHQ = CAB và CP.CQ= CH2. 3) Xác định vị trí của C trên cung nhỏ AB để tích CP.CQ.CH đạt giá trị lớn nhất.
Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 04 tháng 04 năm 2021.
Đề thi thử vào lớp 10 môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội
Đề thi thử vào lớp 10 môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.