Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 05 đề thi cuối học kì 1 (HK1) lớp 10 môn Toán Cánh Diều cấu trúc trắc nghiệm mới

Nội dung Tuyển tập 05 đề thi cuối học kì 1 (HK1) lớp 10 môn Toán Cánh Diều cấu trúc trắc nghiệm mới Bản PDF Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập 05 đề thi cuối học kỳ 1 môn Toán lớp 10 chương trình SGK Cánh Diều, dựa theo cấu trúc trắc nghiệm mới do Bộ Giáo dục và Đào tạo công bố. Đề thi gồm 03 phần: phần 1: trắc nghiệm nhiều phương án lựa chọn, phần 2: trắc nghiệm đúng sai, phần 3: trắc nghiệm trả lời ngắn; thời gian học sinh làm bài thi là 90 phút. Trích dẫn Tuyển tập 05 đề thi cuối học kỳ 1 môn Toán lớp 10 Cánh Diều cấu trúc trắc nghiệm mới: + Vòng xoay ở một ngã bảy là một hình tròn, ở giữa người ta thiết kế một bồn hoa hình tam giác như hình vẽ, phần còn lại trồng cỏ. Dựa trên các số liệu đo được, em hãy tính diện tích phần trồng cỏ (kết quả chính xác đến số nguyên liền trước gần nhất). + Một xưởng cơ khí có hai công nhân là Thái và Bình. Xưởng sản xuất loại sản phẩm I và II. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Thái phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Bình phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Thái không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Tính số tiền lãi lớn nhất trong một tháng của xưởng (kết quả làm tròn số nguyên gần nhất). + Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Công suất của dây chuyền 1 là 45 radio/ngày và dây chuyền 2 là 80 radio/ngày. Để sản xuất một chiếc radio kiểu 1 cần 12 linh kiện điện tử, với kiểu 2 cần 9 linh kiện điện tử, và một chiếc radio kiểu này được cung cấp mỗi ngày không vượt quá 900. Tiễn lãi khi bán một chiếc radio kiểu 1 là 250000 đồng và kiểu 2 là 180000 đồng. Giả sử trong một ngày công ty sản xuất a linh kiện kiểu 1 và b linh kiện kiểu 2 thì lợi nhuận thu được cao nhất. Tính 2a + 3b.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Phú Lâm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Trong mặt phẳng (Oxy) cho ba điểm A(-1;2), B(-1;-1), C(4;-1). a) Chứng minh rằng tam giác ABC vuông tại B. b) Tính diện tích của tam giác ABC. c) Tìm tọa độ trọng tâm G của tam giác ABC. + Cho phương trình mx^2 – (2m + 1)x + m – 4 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1^2 + x2^2 = 15. + Cho hình vuông ABCD có cạnh bằng 2a. Hãy tính AC.AD.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Giải các phương trình và hệ phương trình sau. + Tìm giá trị tham số m sao cho phương trình 9m^2.x – 1 = x – 3m có nghiệm tùy ý. + Tìm giá trị nhỏ nhất của hàm số y = 9x + (3x + 1)/(x – 1) với x > 1.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tân Phong - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Cho ∆ABC có trung tuyến CM. Trên đường thẳng AC lấy điểm N sao cho NA = 2NC. Gọi K là trung điểm MN. Phân tích vecto AK theo AB, AC. + Trong mặt phẳng Oxy cho E(-2;-3); F(3;7); G(0;3); H(-4;-5), chứng minh rằng hai đường thẳng EF và GH song song với nhau. + Trong mặt phẳng Oxy, cho tam giác ∆ABC có A(−1;2); B(3;7); C(0;3). Tìm D sao cho ABCD là hình bình hành.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lương Thế Vinh - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Một người ném một quả bóng với quỹ đạo là một phần đường Parabol (P): y = ax2 + bx + c (a khác 0). Chọn hệ trục tọa độ Oxy sao cho gốc tọa độ O tại vị trí chân người ném bóng, trục Ox nằm trên mặt đất (x, y được tính bằng mét) (xem hình bên). Quả bóng được ném lên từ độ cao 2,5 mét so với mặt đất, Parabol có đỉnh I(2;9/2). Hỏi vị trí bóng chạm mặt đất cách chân người đó bao nhiêu mét? + Cho tam giác ABC có AB = 5; AC = 8, góc A = 60 độ. a) Tính độ dài cạnh BC, trung tuyến AM. b) Trên cạnh BC lấy điểm N sao cho BN = 3, tính độ dài đoạn thẳng AN. + Giải các phương trình và hệ phương trình sau.