Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán

Tài liệu gồm 144 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập câu hỏi và bài tập trắc nghiệm tương tự với đề minh họa tốt nghiệp THPT năm 2020 môn Toán của Bộ Giáo dục và Đào tạo, có đáp án và lời giải chi tiết, giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT năm học 2019 – 2020. Trích dẫn tài liệu bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán: + Định hướng xây dựng bài toán: Tương tự như câu 43 giữ nguyên dạng phương trình và cách đặt vấn đề cũng như yêu cầu của bài toán: Cho phương trình (log 3 3x)^2 + log 3 x + m – 1 = 0 (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc khoảng (0;1). [ads] + Ý tưởng: Ta biết rằng với hình nón, ta có công thức: R^2 + h^2 = l^2. Trong ba đại lượng R, l, h nếu biết hai đại lượng thì tính được đại lượng còn lại. Nếu cho một trong ba đại lượng và ẩn giấu đại lượng thứ hai trong một giả thiết nào đó thì bài toán sẽ khó hơn cho luôn hai đại lượng. Cho hình nón có chiều cao bằng 3. Một mặt phẳng (a) đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều. Biết góc giữa đường thẳng chứa trục của hình nón và mặt phẳng (a) là 45 độ. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng? + Nhận xét. Dạng toán ở mức độ thông hiểu. Học sinh cần kĩ năng quan sát và đọc bảng biến thiên, từ đó biện luận được số nghiệm phương trình thông qua sự tương giao giữa hai đồ thị. Cho hàm số f(x) = m xác định trên R \ {0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau. Tìm tất cả giá trị thực của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh