Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện Toán 7 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thứ hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Tính diện tích của mỗi hình chữ nhật đó. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. 1. Chứng minh rằng: AC = EB và AC // BE 2. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: Al = EK. Chứng minh: I, M, K thẳng hàng. 3. Từ E kẻ EH vuông góc BC (H thuộc BC). Biết góc HBE bằng 50°; góc MEB bằng 25°, tính các góc HEM và BME? 4. Từ điểm O tùy ý trong tam giác ABC, kẻ OQ, ON, OP lần lượt vuông góc với các cạnh BC, CA, AB. Hãy tính tỉ số: (AN2 + BP2 + CQ2)/(AP2 + BQ2 + CN2). + Tìm các số nguyên dương a b c thỏa mãn.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho tam giác ABC có góc A tù. Kẽ AD AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM DE. + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Không dùng máy tính, hãy tính giá trị của biểu thức S.
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 - 2019 quận Đống Đa - Hà Nội
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 – 2019 cụm trường THCS quận Đống Đa – Hà Nội gồm 01 trang với 4 câu tự luận, đề nhằm giao lưu và tuyển chọn các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội để tuyên dương, khen thưởng, thúc đẩy nâng cao chất lượng môn Toán 7.
Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.