Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi kiến thức Toán 8 năm 2016 - 2017 phòng GDĐT Quận 1 - TP HCM

Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán 8 năm học 2016 – 2017. Đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM có đáp án và lời giải chi tiết. Trích dẫn đề thi kiến thức Toán 8 năm 2016 – 2017 phòng GD&ĐT Quận 1 – TP HCM : + Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Tìm số học sinh ban đầu của mỗi lớp. + Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: HED ~ HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M để x2 + y2 + z2 đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Quãng đường từ Khu kinh tế Vũng Áng đến thành phố Vinh dài 120 km. Một người dự định đi xe máy từ Vũng Áng đến thành phố Vinh với vận tốc không đổi. Sau khi đi được 45 phút, người ấy dừng lại nghỉ 15 phút. Để đến thành phố Vinh đúng thời gian đã dự định, người đó phải tăng vận tốc thêm 5 km/h trên quãng đường còn lại. Tính vận tốc của người đi xe máy theo dự định ban đầu. + Cho tam giác ABC có AM là đường trung tuyến. Trên AM lấy điểm I. Tia BI cắt AC tại E. Biết S_AIE = 4cm2; S_CIE = 12cm2. Tính diện tích tam giác ABC. + Trong lớp học có hai tổ chọn ra những bạn có năng khiếu bóng bàn để thi đấu giao hữu. Mỗi đấu thủ của tổ này phải thi đấu lần lượt với từng đấu thủ của tổ kia. Biết rằng số trận đấu diễn ra gấp hai lần tổng số đấu thủ của cả hai tổ. Tìm số đấu thủ của mỗi tổ.
Đề khảo sát năng lực Toán 8 năm 2021 - 2022 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát năng lực học sinh môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát năng lực Toán 8 năm 2021 – 2022 phòng GD&ĐT Thái Thụy – Thái Bình : + Tìm a, b để đa thức 4 3 A(x) x 5x ax b chia hết cho đa thức 2 B(x) x 5x 8. + Cho tam giác ABC vuông tại A (AB < AC) có AD là phân giác, M và N lần lượt là hình chiếu vuông góc của D trên AB và AC, E là giao điểm của BN và DM, F là giao điểm của CM và DN. 1. Chứng minh tứ giác AMDN là hình vuông và AB.DC = AC.BD 2. Chứng minh EF // BC 3. Gọi H là giao điểm của BN và CM chứng minh ANB đồng dạng với NFA và H là trực tâm của AEF. + Cho x, y > 0 thỏa mãn 32×6 + 4y3 = 1. Tìm giá trị lớn nhất của biểu thức 2 3 2 2 2x y 2021 2022 x y 2022 x y 3033 A.
Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Một ca nô chạy xuôi từ bến A đến bến B hết 2 giờ 30 phút và chạy ngược từ bến B về bến A hết 3 giờ 15 phút. Tính khoảng cách giữa hai bến sông A và B, biết một đám bèo thả trôi trên sông (không bị vật cản) trôi được 600m sau 12 phút. + Cho hai số nguyên m, n thỏa mãn: m2 + n2 – 2(m + n) + 1 = 2mn. Chứng minh rằng tích mn chia hết cho 4. + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB, dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. 1. Chứng minh BN vuông góc với AE và tam giác ONI là tam giác vuông. 2. Gọi K là giao điểm của AC và MN. Chứng minh NC là đường phân giác trong của tam giác NKP và AP.CK = AK.CP. 3. Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Cho hai đa thức f(x) = (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) + 2014 và g(x) = x2 + 7x + 8. Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức g(x). + Cho hai đa thức: f(x) = x3 – x – 6 và g(x) = x2 + ax + b. Xác định a và b để đa thức f(x) chia hết cho đa thức g(x). Khi đó tìm đa thức thương. + Cho tam giác ABC đều cố định; gọi M là trung điểm của BC. Hai điểm E và F theo thứ tự lần lượt di chuyển trên cạnh AB và cạnh AC sao cho EMF bằng 60° (E khác A và B; F khác A và C). Xác định vị trí điểm E trên cạnh AB sao cho AE + AF lớn nhất.