Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lượng giác và phương trình lượng giác Toán 11 CTST

Tài liệu gồm 356 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . GÓC LƯỢNG GIÁC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng. Đổi đơn vị đo. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Mối liên hệ giữa radian và độ. + Dạng 3. Đường tròn lượng giác và các bài toán liên quan. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính giá trị lượng giác của một góc lượng giác hoặc một biểu thức. + Dạng 2. Giá trị lượng giác của các góc có liên quan đặc biệt. + Dạng 3. Rút gọn biểu thức lượng giác. Đẳng thức lượng giác. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Xét dấu của các giá trị lượng giác. + Dạng 2. Tính giá trị lượng giác của một góc lượng giác. + Dạng 3. Giá trị lượng giác của các góc có liên quan đặc biệt. + Dạng 4. Rút gọn biểu thức lượng giác. Đẳng thức lượng giác. + Dạng 5. Giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. BÀI 3 . CÔNG THỨC LƯỢNG GIÁC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Áp dụng công thức cộng. + Dạng 2. Áp dụng công thức nhân đôi – hạ bậc. + Dạng 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích. + Dạng 4. Kết hợp các công thức lượng giác. + Dạng 5. Nhận dạng tam giác. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của các hàm số lượng giác cơ bản. + Dạng 3. Tính tuần hoàn của hàm số. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tập xác định. + Dạng 2. Tính chẵn lẻ. + Dạng 3. Tập giá trị – giá trị lớn nhất và giá trị nhỏ nhất. BÀI 5 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương trình sin x = m. + Dạng 2. Phương trình cos x = m. + Dạng 3. Phương trình tan x = m và cot x = m. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Phương trình sin x = m. + Dạng 2. Phương trình cos x = m. + Dạng 3. Phương trình tan x = m. + Dạng 4. Phương trình cot x = m. + Dạng 5. Một số bài toán tổng hợp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề lượng giác ôn thi THPT Quốc gia môn Toán - Nguyễn Hồng Điệp
Tài liệu gồm 30 trang tóm tắt lý thuyết và tuyển chọn 264 bài toán trắc nghiệm hàm số lượng giác và phương trình lượng giác có đáp án trong chương trình Đại số và Giải tích 11 chương 1, tài liệu được biên soạn bởi thầy Nguyễn Hồng Điệp. Phần I . Lý thuyết Phần II . Trắc nghiệm hàm số lượng giác 1. Tập xác định 2. Tính chẵn lẻ 3. GTLN-GTNN [ads] Phần III . Trắc nghiệm phương trình lượng giác 1. Cơ bản 2. Đưa về Cơ bản 3. Bậc 2 4. Đưa về bậc 2 5. Thuần nhất đối với sin và côsin 6. Đưa về thuần nhất 7. Phương trình tích 8. Đẳng cấp bậc 2 9. Phương trình có điều kiện 10. Có điều kiện về góc 11. Phương trình chứa tham số
Đề cương ôn tập cung và góc lượng giác, công thức lượng giác - Phùng Hoàng Em
Tài liệu gồm 12 được biên soạn bởi thầy Phùng Hoàng Em bao gồm tóm tắt lý thuyết, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm chủ đề cung và góc lượng giác, công thức lượng giác trong chương trình Đại số 10 chương 6, tài liệu giúp học sinh ôn tập chuẩn bị cho kỳ kiểm tra 1 tiết Đại số 10 chương 6. A. LÝ THUYẾT CẦN NHỚ 1. Công thức lượng giác cơ bản. 2. Công thức cộng. (Dùng để tách góc, hoặc ghép góc) 3. Công thức góc nhân đôi. (Dùng để giảm góc) 4. Công thức hạ bậc. (Dùng để làm mất bình phương) 5. Dấu của các tỉ số lương giác tương ứng trên các góc phần tư. B. CÁC DẠNG TOÁN TỰ LUẬN Dạng 1 . Cho trước 1 tỉ số lượng giác, tính các tỉ số lượng giác còn lại 1. Ta thực hiện theo các bước: + Sử dụng công thức thích hợp để tính tỉ số tiếp theo (chú ý nhóm công thức cơ bản). + Ứng với miền của α đề cho, xem Mục 5. để chọn kết quả đúng. + Tính toán các tỉ số còn lại. 2. Nếu đề cho trước 1 tỉ số lượng giác, yêu cầu tính giá trị biểu thức. Ta thường biến đổi biểu thức đó về giá trị đã cho. Sau đó, thay kết quả. [ads] Dạng 2 . Rút gọn biểu thức hoặc chứng minh đẳng thức 1. Các phương pháp thường dùng: + Biến đổi vế phức tạp của đẳng thức về vế đơn giản. + Biến đổi tương đương để đẳng thức đi đến kết quả hiển nhiên đúng. + Phối hợp cả hai cách trên. 2. Chú ý: + Nếu trong đẳng thức, các góc đều giống nhau, ta ưu tiên nhóm công thức cơ bản. + Nếu trong đẳng thức, có xuất hiện góc gấp đôi và bình phương tỉ số lượng giác, ta ưu tiên nhóm nhân đôi và hạ bậc. + Nếu cần tách góc, ta ưu tiên nhóm công thức cộng. C. CÂU HỎI TRẮC NGHIỆM Tuyển chọn 60 bài toán cung và góc lượng giác, công thức lượng giác có đáp án.
Sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác - Trần Anh Khoa
Tài liệu gồm 25 trang của tác giả Trần Anh Khoa trình bày phương pháp sử dụng máy tính cầm tay Casio – Vinacal giải nhanh trắc nghiệm lượng giác Toán 11. Nội dung tài liệu : Phần I. Sử dụng máy tính cầm tay trong các bài toán góc và cung lượng giác Phần II. Sử dụng chức năng calc của máy tính cầm tay để kiểm tra các đáp án + Dạng toán 1. Kiểm tra một giá trị là nghiệm của phương trình + Dạng toán 2. Kiểm tra một họ là nghiệm của phương trình + Dạng toán 3. Kiểm tra một tập là txđ của hàm số lượng giác Phần III. Sử dụng máy tính cầm tay hỗ trợ giải phương trình bậc nhất đối với sinx và cosx [ads] Phần IV. Sử dụng chức năng table của máy tính cầm tay + Dạng toán 1. Tìm gtnn và gtln của hàm số lượng giác + Dạng toán 2. Tìm chu kì tuần hoàn của hàm số lượng giác + Dạng toán 3. Xét tính đồng biến, nghịch biến của hàm số lượng giác + Dạng toán 4. Tìm nghiệm và số nghiệm của phương trình lượng giác trong một khoảng cho trước Bài tập củng cố: chuyên đề sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác Khi mà hình thức thi trắc nghiệm “lên ngôi”, cộng với việc nội dung Toán 11 sẽ xuất hiện trong đề thi THPT Quốc gia (đã có trong các đề thi thử môn Toán 2018), thì việc giải nhanh trắc nghiệm lượng giác bằng máy tính Casio là một kỹ năng cần thiết không chỉ đối với học sinh 11 và còn cả với những học sinh lớp 12 và ôn thi THPT.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Bảo Vương
Chuyên đề hàm số lượng giác và phương trình lượng giác 2018 của thầy Nguyễn Bảo Vương gồm 58 trang, với tóm tắt lý thuyết, phân dạng, phương pháp giải, bài tập trắc nghiệm có đáp án và các thủ thuật sử dụng máy tính Casio trong giải Toán lượng giác lớp 11. Nội dung tài liệu: Bài 1. HÀM SỐ LƯỢNG GIÁC + Dạng toán 1. Tìm tập xác định của hàm số lượng giác + Dạng toán 2. Xác định tính chẵn, lẽ của của hàm số lượng giác + Dạng toán 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác + Dạng toán 4. Tìm chu kỳ của hàm số lượng giác + Dạng toán 5. Xác định của hàm số lượng giác có đồ thị cho trước Bài 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] Bài 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP + Dạng toán 1. Phương trình lượng giác thường gặp đối với sinx và cosx + Dạng toán 2. Phương trình bậc hai đối với một hàm số lượng giác + Dạng toán 3. Phương trình thuần nhất (đẳng cấp) đối với sinx và cosx + Dạng toán 4. Phương trình đối xứng đối với sinx và cosx + Dạng toán 5. Phương trình đối xứng đối với tanx và cotx Bài tập trắc nghiệm ôn tập